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Abstract—With the advent of real time AR/VR applications,
mission-critical autonomous vehicle communications, and tele-
medicine, the 5G and future 6G networks have to handle a
combination of high throughput requirements from enhanced
mobile broadband users and extreme reliability and latency
requirements from other users simultaneously. To achieve this, a
number of optimal scheduling regimes for downlink transmission
have been proposed, but most rely upon strong and unrealistic
assumptions about the system in order to be able to approach
the problem using analytical methods such as convex optimiza-
tion. These assumptions render the resulting “optimal” policies
substantially sub-optimal. In this paper we first implement a
flexible and realistic simulation of the physical and medium
access control layers of the 5G NR on which different scheduling
regimes can be implemented and evaluated. We then compare the
schedulers from several past papers and propose new methods
that outperform the rest, with higher sum data rate on average,
and lower block error rates.

Index Terms—URLLC, eMBB, 5G, Scheduling, Optimization,
Deep Reinforcement Learning

I. INTRODUCTION

One of the primary future directions of communications re-
search is towards the combination of ultra-reliable low latency
communication (URLLC) and enhanced mobile broadband
(eMBB) technologies to support applications which require
both guaranteed low latency and high data rates [1]. One such
example is real time AR/VR, especially with haptic feedback,
which has promise for example in tele-medicine [2]. The visual
aspect requires high quality, 3D video with minimal latency,
while haptics often relies on end-to-end (E2E) delays of about
1ms to maintain stability and teleoperation transparency. How-
ever, both URLLC and eMBB alone are already challenging
research problems. URLLC is difficult to achieve and requires
cross-layer design since the E2E reliability and delay of a
network is heavily influenced by interactions between network
layers [3]. This is, however, computationally difficult, and tra-
ditional optimization techniques for this generally non-convex
problem are intractable within the 0.125-1ms transmission
time interval (TTI) in the 5G NR.

Instead, deep learning methods have been proposed to tackle
the problem. However, the additional requirement for eMBB
complicates the issue; URLLC traffic is often scheduled on
networks such that it overlaps in time and/or frequency with
eMBB traffic, thus sharing the same resources and leading
to potential data-rate-loss in the eMBB traffic [4]. This is a
problem for the aforementioned example application, where
the large-volume data also requires high data rates. For such
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applications, it is necessary to consider optimal, multilayer
joint scheduling of URLLC and eMBB traffic on the 5G NR
and in future on the 6G network.

In the following subsections of the Introduction, some
background will be provided before introducing the problem in
more detail and outlining this paper’s contribution. The subse-
quent sections will describe the various scheduling frameworks
explored, the methods used to test and compare them, and
finally the results.

A. Background

In the 5G NR, the time-frequency space is organized as
a resource grid, shown in Fig. 1. Time is divided into time
“slots” 1ms in length known as eMBB TTIs. These are
subdivided into a number of “mini-slots” or URLLC TTIs,
which are further divided into OFDM symbols. In this paper
we assume mms = 12 mini-slots and mofdm = 12 OFDM
symbols per slot for simplicity, so the two are equivalent.
Similarly, a given network uses a portion of frequency space
whose width is called the bandwidth, which varies for example
between 3G, 4G, and 5G. The bandwidth is divided into many
subcarriers, and contiguous groups of msc subcarriers over one
time slot form a resource block (RB). This is illustrated as one
row of the resource grid in Fig. 1. For this paper we assume
msc = 27, which gives the required numbers of data bits per
RB for the error correcting codes described in Section II-A2.
In reality, 14 symbols per slot is standard, and the number
of mini-slots and subcarrier spacing are both defined by the
5G Numerology, which allows for flexibility in meeting user
quality of service (QoS) requirements [5].

One of the main requirements of 5G networks is to support
gigabit per second data rates for eMBB at latencies of a few
milliseconds, as well as ultra-reliable low latency communi-
cation with sub-millisecond latencies and 99.999% reliability
[6]. To achieve both, a so-called superposition/puncturing
framework is utilized. The RBs in a given slot are shared
among the eMBB users, and the allocation remains fixed for
the whole eMBB TTI. On the other hand, if URLLC data
is received during a slot, it cannot wait until the next slot
so it is allocated the next mini-slot, on top of the current
eMBB traffic. By assigning a fraction of the power to both the
eMBB and URLLC traffic or all the power to just the URLLC
traffic for that mini-slot, the base station (gNB) performs
superpositioning or puncturing respectively. In this manner,
it guarantees the latency and reliability of the URLLC packet
at the cost of the eMBB users’ rates. After the eMBB TTI has
elapsed, the gNB can signal to the user the mini-slot locations
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where superpositioning or puncturing occurred so the user can
decode the signal. This pre-emption of subcarriers has been
shown to be more efficient than statically separating eMBB
and URLLC traffic because of the sporadic, stochastic nature
of URLLC demands [7].
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Fig. 1. Time-frequency resource grid of 1 time slot, showing resource block
allocation to 5 users. The simulation parameters for the construction of the
resource grid are outlined in Table I

However, the more subcarriers that are taken from an eMBB
user to fulfill URLLC requirements, the more likely the decod-
ing will fail, causing eMBB data loss. Thus, it is important to
spread the “punctures” or pre-empted resources over multiple
orthogonal eMBB users to avoid affecting the quality of a
single user’s interaction. This is a difficult problem because it
gives rise to a multi-timescale optimization problem to satisfy
eMBB users on slots and stochastic URLLC demands on mini-
slots simultaneously. In addition, the rates depend heavily
on the modulation and coding schemes, which are chosen
dynamically to keep error rates below a certain level. It is
therefore impossible to express the eMBB failure probabil-
ity as a function of URLLC scheduling in an analytically
closed form [8]. While [4] approximates the objective function
using three models - a linear function, a convex function,
and a threshold function - [8] argues that this is unsuitable
and proposes instead a model free deep deterministic policy
gradient (DDPG)-based multiplexer dubbed DEMUX. This
substantially outperforms the analytical approximations.

Yin et al. [9] formulate a dual objective function to max-
imize proportional fairness in eMBB scheduling while sup-
porting the URLLC preemptions. They solve a mixed integer
linear programming problem using convex relaxation and a
greedy algorithm, achieving two different solutions with good
performance on simulations. However, their simulations do
not include the factors such as modulation and low density
parity check (LDPC) coding described below, and thus tend
to agree with the simplified analytical models which may not
be realistic. On the other hand, Karimi et al. [10] take into
account a number of 5G physical and MAC layer subsystems,
including the physical downlink control channel (PDCCH),
the physical downlink shared channel (PDSCH), and hybrid
automatic repeat request (HARQ) retransmission. However,
they still do not model the coding scheme.

Further deep reinforcement learning-based approaches are

presented in Alsenwi et al. [11], and Saggese et al. [12].
While Saggese uses a proximal policy optimization (PPO)
algorithm and shows that URLLC latency requirements are
never violated, Alsenwi argues that DRL alone cannot guar-
antee QoS satisfaction, and thus proposes a two-staged, mixed
optimization and DRL method. This approach not only con-
siders eMBB rate maximization with URLLC constraints, but
also takes into account the variance in past eMBB data rates
to quantify the reliability and risk in the eMBB transmissions
due to the URLLC interference. Saggese’s approach does not
address the eMBB scheduling problem at all, but focuses
entirely on the URLLC preemption.

One predominant reason why analytical approximations
perform poorly is that it is not possible to model precisely
the LDPC encoding used for forward error correction in the
5G NR [13], making it difficult to model the likelihood of
errors in the decoding. While it is possible to obtain curves
for the expected block error rates resulting from the LDPC
experimentally, it is infeasible to have a table of these for every
possible subcarrier distribution among eMBB users, volume
of URLLC traffic, modulation and coding scheme (MCS),
channel condition, etc.. Hence, DRL performs well due to its
ability to generalize beyond the training. However, the authors
of [8] experienced convergence issues with the algorithm and
had to use domain knowledge and approximations based on the
scheduling method of eMBB. While these may be a reasonable
approximation for one network state or configuration, real net-
works are not stationary and may differ substantially, leading
to a model mismatch [1]. Furthermore, training is very time
consuming. The largest problem, however, is that DRL has no
ability to build in QoS requirements, so there is no guarantee
of satisfying URLLC constraints. While Huang et al. attempt
to rectify this by using two post-processing functions for the
output of their DRL agent, the issue remains problematic [8].
Thus, DRL is also not a perfect solution.

B. Contribution

This paper performs an unbiased and realistic comparison
of the various scheduling methods and proposes two new ones
by providing the following contributions:

• A simulation environment built by the author on MAT-
LAB’s communications and 5G toolboxes which allows
fast and realistic simulation of the 5G physical (PHY)
and medium access control (MAC) layers and allows easy
implementation of custom schedulers.

• An analytical comparison of the accuracy, effectiveness,
and viability of the various scheduling algorithms pro-
posed in literature, which are outlined in the previous
section.

• A comparison, using the simulation environment, of a
subset of the proposed scheduling algorithms.

• Two alternative scheduling schemes that achieve im-
proved results in the simulation.
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Fig. 2. Block Diagram of the implemented simulation

II. METHODS

A. The Simulation
In order to evaluate different scheduling policies effectively,

an accurate yet simple and fast simulation was needed to
overcome the impossibility of analytical solutions [8]. To this
effect, a simulation was designed on MATLAB (Mathworks
Inc., Massachusetts, USA), using the communication and 5G
toolboxes. The overall structure of the simulation is shown in
Fig. 2, and some key parameters are listed in Table I

TABLE I
KEY SIMULATION PARAMETERS

Parameter Symbol Value

Number of Users n 8
Bandwidth BW 30 MHz

Carrier Frequency fc 4 GHz
Number of RBs mRB 50
Subcarriers/RB msc 27

OFDM Symbols/Slot mofdm 12
Minislots/Slot mms 12

User distances from gNB di Unif[50, 100]

At a high level, n users are generated at uniformly dis-
tributed distances, di ∼ Unif[50, 1000] metres from the base
station (gNB). Each user is assigned a communication channel
from the gNB with a certain noise power spectral density N i

0

(See Section II-A4). Based on the channel qualities, the gNB
performs optimal fair allocation of the available bandwidth
to the users (Seciton II-A1). Employing the infinite backlog
assumption, it is assumed that each user wants to receive
as much data as the gNB can possibly send. Once resource
blocks have been assigned to the users, the channel qualities
are again used to determine the modulation and coding scheme
(MCS) used on each resource block, which dictates how much
data can be sent to each user in that slot. This quantity of
data is generated uniformly randomly and processed (Sec-
tion II-A2) before being sent over the respective additive

white Gaussian noise (AWGN) channel to the user (section
II-A4). Before transmission, however, some RBs in some mini-
slots are preempted by URLLC traffic, as determined by the
Poisson-random arrival of URLLC packets and the URLLC
scheduler. After transmission, each user performs its own
signal processing to demodulate and decode the signal, and
finally the error rates and data rates are determined (Section
II-A6).

1) eMBB Scheduling: Though the eMBB scheduling is not
the primary goal of this work, it is important to have a realistic
and representative setup. Thus, the simulation performs a
proportional fair scheduling based on the calculated MCS
levels of each user.

Rather than trying to satisfy a certain data requirement for
each user, we assume that each user has an infinite backlog of
data waiting to be received, so the sum data rate to all users
can be maximized without considering inefficiencies caused
by over-allocation of resources to a certain user who does
not need them. Thus, to efficiently and equitably allocate the
resources, we instead look at the channel qualities to ensure
users with poor channel quality are given more bandwidth
so they too can receive their data. To this end, we employ a
proportional fair scheduling algorithm modified from [14].

We make a further simplification in describing the trans-
mission rate as the concave, increasing function given by the
Shannon channel capacity, equation 1 in [14]:

ri(wi) = wi log2

(
1 + β

phi

N i
0wi

)
(1)

where p is the transmit power, which is assumed to be equal
for all users, hi is the channel gain, and wi is the assigned
bandwidth. The parameter β ∈ [0, 1] addresses the discrepancy
between the theoretically achievable Shannon capacity and the
practically possible rate governed by the MCS [15]. Because
LDPC coding approaches the Shannon capacity, however, we
choose a value relatively close to 1: β = 0.75. Now we
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maximize the sum of the logs of the rates using fmincon in
MATLAB, to obtain the proportional fair allocation:

argmax
wi

n∑
i=1

log

(
wi log2

(
1 + β

phi

N i
0wi

))
subject to wi = w̄iWRB

n∑
i=1

w̄i = mRB

w̄i ∈ Z+

The wi values are continuous bandwidths, but in reality the
frequency domain is subdivided into resource blocks of finite
bandwidth. Thus, the allocated bandwidths are discretized into
numbers of RBs, w̄i, such that wi = w̄iWRB where WRB

is the bandwidth of a single RB, given by the product of
subcarrier spacing and the number of subcarriers per RB. The
sum of the number of resource blocks must equal the total
available number set for the simulation. In fact, allocation res-
olution is usually limited to “resource block groups” (RBGs)
of several RBs, but for this simulation we assume the number
of RBs per RBG is 1. To speed up the solution, we relax the
problem to exact linear programming and afterwards discretize
the bandwidths by rounding them to the nearest number of RBs
while maintaining the sum constraint. This is acceptable since
the exact eMBB scheduling optimality is not the goal of this
work.

SNR =
ph

N0w
(2)

With the bandwidths assigned to each user, we can then
find the actual SNRs of each channel using equation 2, and use
these to determine the assigned MCS such that the block error
rate (BLER) is less than 0.1, which is standard in literature
[8]. This mapping was determined by experimentation with
the simulation. The SNR was increased for each given MCS
until the BLER exceeded 0.1, and this value was chosen as the
cutoff. The resultant MCS strategy is shown in Table II. As
an explanatory example, a channel with SNR= 24 would be
assigned the MCS associated with the next lowest SNR value
found in the table, so 21, which gives a QAM16 modulation
with code rate 3/4.

TABLE II
SNR CUTOFFS FOR THE 12 POSSIBLE COMBINATIONS OF MODULATION

TYPE (QPSK, QAM16/64) AND CODE RATE (1/2, 2/3, 3/4, 5/6).

1/2 2/3 3/4 5/6
QPSK 4 6 10 16

QAM16 18.5 20 21 25
QAM64 26 26.5 28 30

2) Transmitter Signal Processing: Given the number of
RBs and their corresponding MCS allocated to each user, we
know the number of data bits that can be sent over each RB,
as explained in this section. This number of bits is generated
by sampling from Unif{0, 1} and appending a 16-bit cyclic
redundancy check (CRC-16) sequence. This is used for error
checking in the receiving user’s signal processing.

The data stream is then encoded using Low-Density Parity-
Check (LDPC) coding, a linear error-correcting code that
allows for error-free transmission over noisy channels. LDPC
involves computing another sequence of bits that are again
appended to the message. These bits are chosen such that the
modified message falls in the nullspace of a certain sparse
parity-check matrix. The matrices used in this simulation are
taken from cyclic permutation matrices in the IEEE 802.11n
standard [16] for three specific block lengths. Depending on
the length of the appended codeword, the encoding can be
more or less robust to noise. This is characterized by the
code rate, R, which describes the ratio of data bits to total
bits in the message. In the standard, R can take values 1/2,
2/3, 3/4, or 5/6. For example, a message with block length
(i.e. total capacity of the RB) 1296 and coding rate 2/3 sends
1296×2/3−16 data bits, 16 CRC bits, and 1296×1/3 LDPC
parity bits. Thus, the data rate depends on the code rate, which
in turn depends on the channel SNR as given in Table II.

After CRC calculation and LDPC coding, the data un-
dergoes OFDM modulation. Similar to the code rate, the
modulation scheme also determines how many bits can be sent
per RB. For QPSK modulation, pairs of bits are encoded as
complex numbers with magnitude and phase forming a grid,
or constellation, of four points on the complex plane. Each
OFDM symbol carries one such number, meaning that each
symbol carries two bits. For QAM16 modulation, the grid
of complex numbers is 4x4, so each symbol carries 4 bits.
Similarly, for QAM64, each symbol carries 6 bits. An example
constellation is found in Fig. 3. By modulating the bits in this
way, noise in the signal does not immediately flip bits, but
rather just causes a slight spread around the original point, as
seen in the figure. By choosing higher modulation schemes,
however, the points become closer together and thus more
sensitive to noise. Therefore, the gNB chooses the modulation
scheme based on the SNR to keep the BLER below 0.1,
as shown in Table II. Modulation is the final step of signal
processing before the data is sent.
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Fig. 3. QAM16 modulation constellation showing ideal amplitude and phase
locations (orange) overlaid with noisy data (blue)
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3) URLLC Puncturing Scheduler: Before the prepared data
can be sent over the channel, URLLC packets may arrive
and preempt some of the resources. In particular, URLLC
packets are taken to be 432 bytes in size, which, with QPSK
modulation and a 1/3 code rate, takes up 432 subcarriers or
16 RBs. In testing, this number is varied from 4 RBs to 20 to
simulate different levels of URLLC traffic. The packets arrive
as a Poisson-random process with λ = 0.5 in each mini-slot.
A scheduler, described in Section III, chooses which RBs to
preempt, replaces their data with the URLLC data, and returns
a puncture map indicating the punctured blocks to the user
for decoding. The scheduler attempts to minimize the loss in
rate caused by the puncturing by employing several different
strategies which are tested in Section III-E.

4) Channel: The encoded, modulated, and potentially
punctured data is then sent over channels from the gNB to
the users. Each user’s channel is modeled as an additive white
Gaussian noise (AWGN) channel and is assigned a noise
power spectral density N i

0 at the start of the simulation. The
value N i

0 of the ith channel is sampled randomly from a
normal distribution with µi = 6 log(1050−di)−18 and σi = 2,
where di is the distance of user i from the gNB. Thus, users
further from the gNB are more likely to have poorer channel
conditions, and the resultant SNR values range roughly from
2.5 to 30, which were found experimentally to cover the full
range of MCS (See Table II).

This method was employed because it provided a convenient
way to quantify the channel quality by a single value, the
SNR, which could be used to determine the MCS. It is also
more general and does not require a specific description of
the geography, building density, weather, etc. of the network
area, which is unlike Rayleigh or Rician multipath fading
models [17]. However, it does have limitations. There is
no consideration for Doppler shift, multipath interference, or
other effects that could induce a phase shift. As seen in Fig. 3,
the AWGN model provides some point spread, but no rotation
of the constellation, nor magnitude scaling on average.

5) Receiver Signal Processing and Error Checking: The
receiver signal processing chain is effectively the same as
the transmitter signal processing but in reverse, and with the
addition of a preemption flushing step. The received signal is
first demodulated using the known MCS. Preemption flushing
comes next, which ensures that the preempted bits do not
propagate their error throughout the LDPC decoding process.
These bits, which are flagged by the preemption map, are
nullified before the data is LDPC decoded and finally checked
for errors using the CRC checksum. If the CRC fails, the block
is taken to be corrupted, so all the contained data is lost, and
the data rate for that user decreases for that slot.

6) Time Variation: Practical communication networks are
not perfectly constant. Instead, they experience some variation
with time. This is modeled in the simulation by adding a
δN i

0 to the noise power spectral density at each iteration
(each slot), to introduce some variation. The δN i

0 is given
by N × (0.25 × 10−8)dBm/Hz where N ∼ Unif[−1, 1]. In
addition, the moving average data rate, R̄i(t) for each user
is kept track of to inform some URLLC scheduling methods.
The calculation ascribes more weight to recently achieved data

rates by setting

R̄i(t+ 1) =

(
1

T

)
R̄i(t) +

(
1− 1

T

)
ri(t) (3)

Where T is the averaging period in number of mini-slots.

III. EXISTING SCHEDULING METHODS

In the following sections, I will outline several optimization
algorithms proposed in the literature, which were introduced
in Section I-A. I will then implement them on the described
simulation, and compare their performance. Unfortunately, due
to time constraints and the substantial work involved, I will
not implement the DRL-based approaches.

A. Anand et al. [4]

In this paper, the authors propose two separate URLLC
traffic allocation policies, the Resource Proportional (RP) and
Threshold Proportional (TP) placements. The RP scheduler
assigns URLLC traffic to the RBs of user m proportional to
the amount of resources allocated to user m by the eMBB
scheduler. i.e. let γt

m be the fraction of URLLC traffic in slot
t that is assigned to an RB belonging to user m, and let ϕt

m

be the fraction of the total bandwidth that is allocated to user
m. In the RP regime we have:

γt
m = ϕt

m (4)

For example, if user 1 is allocated half of all RBs, then half
of the URLLC traffic is assigned to user 1’s RBs. Interestingly,
it is shown in the paper that over the long term, this is
equivalent to uniformly randomly distributing the URLLC
preemptions over the resource grid.

The threshold model approximates a threshold URLLC
preemption fraction beyond which the entire RB of data is
lost. In particular, let Γt

m be the fraction of user m’s RBs that
are preempted by URLLC traffic in slot t. The authors define
a threshold function θ(Γ, α) such that:

θ(Γ, α) =

{
1 Γ < α

0 Γ ≥ α
(5)

Where the cutoff for user m, αt
m ∈ [0, 1], depends on the

channel quality of the user during slot t. The TP scheduler then
assigns URLLC RBs according to this threshold such that

γt
m =

αt
m∑n

m′=1 α
t
m′

(6)

In the paper, the authors simply assign αm = 0.5 to half
the users and αm = 0.7 to the other half. Both the TP and RP
methods as described here are tested in the simulation.

B. Yin et al. [9]

The authors solve a mixed integer linear programming
problem using convex relaxation and a greedy algorithm to
maximize a dual objective function which addresses pro-
portional fairness in eMBB scheduling while satisfying the
URLLC requirements. Beyond the scenario described in this
paper so far, the authors consider an additional scenario
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where the URLLC traffic actually has less stringent latency
requirements, for example of 10ms, and thus does not need to
be scheduled immediately in the next mini-slot. This makes
it easier to maximize eMBB data rates while achieving the
URLLC requirements. However, in this paper we focus on the
scenario where this is not possible, so we ignore this part of
the Yin paper.

Yin approximates the rate, rm(t) of eMBB user m in mini-
slot t in terms of the rate that user would have achieved (r̃m(t))
scaled by the fraction of resource elements that are preempted
from the user by URLLC traffic in that mini-slot. In syntax
convenient for our simulation, this is expressed in equation 7.

rm(t) =

(
1−

∑mRB

k=1 yk(t)xk
m(t)∑mRB

k=1 xk
m(t)

)
r̃m(t) (7)

Where yk(t) ∈ {0, 1} is 1 if RB k is preempted by URLLC
traffic in mini-slot t and 0 otherwise, and xk

m(t) ∈ {0, 1} is
1 if RB k is allocated to eMBB user m, and 0 otherwise. In
our simulation, this is given and constant for the duration of
one time slot. The value of r̃m(t) is also given by the eMBB
allocation and MCS. To maximize the long term proportional
fair allocation, the average rate over time should be used rather
than this instantaneous rate for a single mini-slot. Hence we
consider R̄m(t), the average rate of user m over T mini-
slots, as given in equation 3. Thus we can state the integer
programming problem at each mini-slot:

maximize
yk

n∑
m=1

U(R̄m)

Subject to
mRB∑
k=1

yk(t) = mllc

yk(t) ∈ {0, 1}

Where U(ϕm) = log R̄m for proportional fairness. Note
that additional implicit constraints regarding the number of
RBs that can be allocated to are covered by the binary nature
of x and y and the lengths of the vectors. Additionally, the
constraint that each RB must be allocated to exactly one user
is automatically satisfied since x is given. The only explicit
constraint, therefore, is that the total number of URLLC
packets must equal the prescribed number, mllc, given by the
Poisson-random process in the simulation.

To solve this, Yin proposes to use a convex relaxation
using the concave convex procedure (CCCP). The the binary
constraint can be reformulated as

yk(t)(1− yk(t)) ≤ 0, yk ∈ [0, 1] (8)

For all k ∈ {1, . . . ,mRB}. It is possible to then formulate the
problem as follows, which is shown to be equivalent:

minimize
yk

n∑
m=1

−U(R̄(m)) + ζ

mRB∑
k=1

yk(t)
(
1− yk(t)

)
Subject to

mRB∑
k=1

yk(t) = mllc

yk ∈ [0, 1]

The method for solving this iteratively is given in Algorithm
1 of the paper and is denoted the CCCP Method. Due to
concerns about speed, the authors also proposed a greedy
algorithm which reaches a slightly different solution. This
simply iterates through the RBs needed by incoming URLLC
traffic and assigns them one-by-one to the remaining already-
allocated RB which has the least effect on the aggregate
proportional fair rate. Let xm be the number of RBs allocated
to user m and ∆xm be the number of RBs of user m that are
preempted. The proportional fair utility is given by modifying
equation 7:

P =

n∑
m=1

log

((
1− ∆xm

xm

)
r̃m

)
(9)

To find the effect of preempting an RB from user m, we must
determine

∂P

∂(∆xm)
=

1

∆xm − xm
(10)

Thus, for every RB to be preempted in turn we choose the user
from which to take the RB by minimizing the absolute value
of equation 10, whose denominator can never be greater than
0. We denote this as the Greedy Method. Both Yin methods
were implemented in our simulation.

C. Karimi et al. [10]

This paper aims to maximize proportional fairness for the
eMBB users and URLLC rate by dynamically allocating both
at once. This is fundamentally different from the puncturing
methods described otherwise in this work, as it does not fill
the bandwidth with eMBB traffic and then schedule URLLC
separately. It also relies on HARQ retransmission of failed
packets, which could be problematic for achieving the required
URLLC latencies. The problem formulation is shown below:

max
bj
u/k

nllc∑
u=1

αuR
llc
u +

nmbb∑
m=1

log R̄mbb
m ,

Subject to:
nllc∑
u=1

bji +

murllc∑
m=1

bjm ≤ 1,∀j ∈ {1, · · · ,mRB} ,

mRB∑
j=1

bju/m ≥ min
(
R

llc/mbb
u/m , 1

)
· bmin

u/m, ∀u,m,

Rllc
i ≤ Qllc

i ∀i,
bju/m ∈ {0, 1} ∀u,m, j,

Where the binary variable bji is 1 if the jth RB is allocated
to the ith user, and 0 otherwise. The users are split into nllc

users with URLLC traffic and rates Rllc
u , and nmbb users

with eMBB requirements and average throughput R̄mbb
m . The

objective is a weighted sum (with weights αu ∈ [0, 1]) of the
URLLC sum rate and the proportional fair eMBB allocation
objective function. The first constraint ensures that each RB
is allocated to only one user. The second ensures that each
user is allocated enough RBs to meet the minimum control
channel overhead, bmin

u/m. Lastly, the third constraint keeps the
assigned rate for a URLLC user below the queued amount
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of data, Qllc
u , because the authors do not employ the infinite

backlog assumption for the URLLC users since the amount
of data is usually relatively small compared to eMBB. The
algorithm for URLLC scheduling is outlined in Algorithm 1
of the paper.

This method is problematic because it assumes eMBB and
URLLC traffic can be scheduled at the same time scale,
which is exactly what we cannot assume, and what makes
this problem so difficult. Scheduling eMBB traffic at every
mini-slot is not possible because the overhead is too high,
whereas scheduling URLLC traffic only once in a slot is also
not possible as this would not satisfy the latency requirements.
Thus, this method is incompatible with the implemented
simulation and will not be tested quantitatively, as the results
would not be comparable to other methods.

D. Contributions

In this work I implement two modest improvements of
methods described above. The first is a modified, MCS-aware
threshold proportional scheduler where the threshold, αt

m, is
taken to be a function of the channel quality of user m instead
of being arbitrarily assigned. In particular, recall from Table
II that a user with a certain SNR, sm, is assigned an MCS
corresponding to the next lowest SNR, s− in the lookup table.
Suppose the next larger SNR in the table is s+. This means
that the closer s is to s+, the more gap there is between the
SNR of the channel and the cutoff SNR for a BLER less than
0.1 at the given MCS. Hence, the closer s is to s+, the lower
the probability of transmission failure. The largest gap between
SNR values in the table is 6, so to have a maximum α value
of about 0.7 as it is in [4], we set

αt
m =

sm − s−
9

(11)

This method will be referred to as MCS-aware threshold
proportional, or MTP. A second algorithm is based on the
packetized proportional fair method in [18], and is similar to
the CCCP approach. As in Yin’s CCCP method, let r̃m(t) be
the rate user m would achieve in mini-slot t without URLLC
preemption. This is unique to every user as it is the number of
RBs allocated to the user times the bits per RB for the user,
which is determined by the MCS, divided by the number of
mini-slots per slot. Now rather than considering the actual RB
locations as in equation 7, we follow the syntax from equation
9 and consider instead the number of RBs and preemptions
per user. The instantaneous throughput of user m is given by:

rm(t) = r̃m

(
1− ∆xm

xm

)
(12)

The moving average rate, R̄(t) over the last T mini-slots
is given by equation 3. Now from [18], we can approximate
proportional fair allocation in this packetized model by max-
imizing

n∑
m=1

rm(t)

R̄m(t)
(13)

However, observe that maximizing equation 12 is the same

as minimizing
r̃m∆xm

xm
. Thus we reformulate the problem as

follows:

minimize
∆xm

n∑
m=1

r̃m
xmR̄m

∆xm

Subject to
n∑

m=1

∆xm = mllc

∆xm ∈ 0, 1, . . . , xm ∀m ∈ {1, . . . , n}

This is a mixed integer linear program where
r̃m

xmR̄m
is a

constant that can be calculated for each user in each mini-slot.
The problem is simple enough to be calculated efficiently us-
ing CVX in MATLAB. This method is referred to in testing as
the Packetized MCS-aware Proportional Fair (PMPF) method.

E. Testing

As an initial sanity check to ensure the functioning of
the eMBB scheduler, the MCS selection process, the channel
model, and the reliance of throughput on MCS level, the
simulation was run without URLLC data at increasing levels
of hard-coded signal to noise ratio. The result, shown in Fig. 4,
displays the expected upward trend with SNR, which indicates
that the simulation components are working as desired.
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Fig. 4. Sum data rate at various levels of channel signal to noise ratio. This
shows an increasing trend, as expected, meaning the MCS selection process
and its effect on the throughput in the simulation work.

To evaluate the effectiveness of the various schedulers,
several tests were carried out. Recall that the schedulers in
question are the RP and TP [4], the CCCP and Greedy [9],
and the MTP and PMPF (Section III-D). Every scheduler was
simulated 100 times each at several levels of URLLC traffic.
The sum data rate of all eMBB users, the block error rate,
and the bit error rate were each averaged over the 100 runs at
every traffic level, and then plotted. The results are shown in
Section IV.
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Fig. 5. Block Error Rate versus URLLC Traffic Comparison between Joint
Scheduling Algorithms
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Fig. 6. Bit Error Rate versus URLLC Traffic Comparison between Joint
Scheduling Algorithms

The block error rate describes the ratio of RBs that contain
a CRC error versus the total number of RBs in a slot, as
described in Section II-A6. Since the CRC error can be caused
by a single corrupt bit, however, this is an overly sensitive
test and gives rise to very coarse results since each user
only has a few allocated RBs. Thus, the final signal is also
compared bitwise to the original signal emitted by the gNB
before preemption or channel fading to find the actual bit error
rate in this simulation, which is often very low even though
the CRC failed.

This bit error rate and the block error rate are used to
evaluate the performance of the URLLC traffic scheduler,
and are plotted in Fig. 6 and 5 respectively. The primary
performance measure, however, is the sum data rate achieved
by the users (see Fig. 7). This is strongly affected by the error
rates as errors lead to entire blocks of data being dropped.
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Fig. 7. Sum Data Rate versus URLLC Traffic Comparison between Joint
Scheduling Algorithms
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Fig. 8. Sum Data Rate versus URLLC Traffic Comparison between Joint
Scheduling Algorithms: Here, RBs with corrupt bits are kept, and only the
error bits themselves are thrown out when calculating the rate.

On the other hand, considering that eMBB traffic may often
consist of applications such as high-quality video streaming
where individual corrupted bits may cause a single pixel to be
wrong, it is conceivable that small bit error rates are actually
acceptable. Thus, a second sum data rate is also considered in
which all RBs are kept, and only the corrupt bits themselves
are thrown out (see Fig. 8). This results in much more linear
loss in rate as URLLC traffic increases, and is perhaps a more
precise description of how many errors are actually occurring.

IV. RESULTS

The results of the tests are shown here. Fig. 6 shows the bit
error rate, Fig. 5 shows the block error rate, Fig. 7 is the sum
data rate, and Fig. 8 is the sum data rate without dropping
entire RBs in which the CRC failed.
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It is worth noting first that in Figures 5 and 6, which show
error, low numbers indicate good performance whereas in
Figures 7 and 8, which show throughput, higher numbers are
better. As expected, we see an increase in error and a decrease
in eMBB data rate as URLLC traffic is increased. Looking at
the plots, it is difficult to pick out a clear best performer, but
the PMPF method has the highest sum data rate, some of the
highest bitwise data rates at higher URLLC traffic levels, and
the lowest block error rate. The CCCP method, which follows
a very similar algorithm, has similar performance, with higher
bit-wise data rate and lower bit error rate. The greedy approach
and the two threshold proportional ones, on the other hand,
have higher errors and lower rates.

V. CONCLUSION

This paper has compared the effectiveness of several joint
eMBB/URLLC schedulers for the 5G NR through the imple-
mentation of an accurate simulation of the 5G PHY and MAC
layers. Comparable performance was found for most of the
methods, though a packetized MCS-aware proportional fair
algorithm proposed in Section III-D had the highest sum data
rate and lowest block error rate at most volumes of URLLC
traffic. A similar approach proposed by Yin et al. and based on
a convex relaxation of the proportional fair allocation problem
[9] was perhaps second best.

In further studies, the performance of deep reinforcement
learning-based methods should be compared to these results.
In addition, this work and those cited in it have considered only
an orthogonal multiple access (OMA) scheme with URLLC
puncturing which completely overwrites that section of eMBB
data. However, future work could explore a non-orthogonal
multiple access (NOMA) approach where the URLLC data
is superposed on the eMBB data and each is decoded using
successive interference cancellation (SIC) to avoid packet loss.
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