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Abstract. Prostate cancer is one of the most commonly diagnosed
cancers worldwide, yet working towards more accurate and cost-
effective detection strategies for this disease remains an active area
of research. This includes introducing a new method called micro-
ultrasound (microUS), which has equal performance to the gold stan-
dard multiparametric magnetic resonance imaging for prostate biopsy
guidance. Cancerous lesions are often stiffer than their healthy surround-
ings, and this tissue stiffness can be imaged using elastography. Clinical
strain elastography generally uses manual compression of the tissue via
the probe face; however, this method is highly user-dependent and can
result in unreliable images due to the complexity and steep learning curve
to apply ideal compression. Here, we implement and validate a relative
elastography method called transfer function (TF) imaging, which uses
automatic tissue compression from a voice coil motor attached to the
microUS probe for excitation, and calculates the tissue’s relative stiff-
ness from its frequency response to this excitation. We demonstrate our
method’s improved repeatability compared to manual strain elastogra-
phy using quantitative and qualitative evaluations performed using a
commercial quality assurance elasticity phantom. Overall, this method
makes elastography much simpler for clinicians, further enabling its use
in guiding prostate biopsy procedures.

Keywords: Micro-ultrasound · Elastography · Prostate cancer

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Gomez et al. (Eds.): ASMUS 2024, LNCS 15186, pp. 14–23, 2025.
https://doi.org/10.1007/978-3-031-73647-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-73647-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-73647-6_2


Transfer Function Micro-ultrasound Elastography 15

1 Introduction

Prostate cancer (PCa) is the fourth most commonly diagnosed cancer worldwide
[5], with rates expected to rise until 2040 due in part to an aging population and
rising life expectancy worldwide [10]. However, despite its relatively high preva-
lence, limitations persist in the detection and diagnosis of this disease. Many of
these limitations can be traced back to the inability of conventional ultrasound
(US) to accurately and reliably identify PCa tumours, as only approximately
50% of PCa lesions are detectable by US [17]. This results in a series of biopsy
samples being taken from predefined locations in the prostate to search for the
disease, rather than targeting specific suspicious areas [15]. In turn, this sys-
tematic sampling technique leads to some cases of clinically significant PCa
going undetected, as well as clinically insignificant PCa being overdiagnosed
[9]. Together, this results in a relatively poor sensitivity of 48% [1]. Addressing
this shortcoming has been an active area of research, and has led to multipara-
metric magnetic resonance imaging (mpMRI) becoming the gold standard for
PCa imaging. However, mpMRI remains an expensive and relatively inaccessible
method for disease detection. Another effort to improve this has been the devel-
opment of the ExactVu™ micro-ultrasound (microUS) system (Exact Imaging,
Markham, ON, Canada), which uses a higher transmit frequency of up to 29MHz
(compared to typical 9–12 MHz [11]), allowing it to have an improved spatial
resolution of up to 70 μm [6]. Meta-analyses have shown that B-mode microUS
alone can guide targeted prostate biopsies as well as mpMRI [24], although a ran-
domized controlled trial is underway to confirm these findings (NCT05220501)
[12]. There has recently been additional work to further improve the utility of
microUS, including deep learning-based image analysis [20], quantitative US [18],
volumetric imaging [23], and elastography [3].

Since tumours are often stiffer than their surrounding healthy tissue [22],
elastography using conventional US has been an active area of development for
PCa imaging [2,4]. US-based elastography has been a component of previous
multiparametric US systems, and contributed to these systems being able to
detect PCa better than B-mode alone [13].

A popular method of US-based elastography is shear wave elastography,
which provides quantitative estimates of tissue stiffness [2,4]. However, these esti-
mates are only valid if a volumetric image is obtained due to the unknown shear
wave direction in the tissue [26]. This makes it difficult to obtain these images in
real-time to guide prostate biopsy procedures, as the geometric constraints of a
transrectal US (TRUS) probe mean that a matrix array to obtain real-time three
dimensional (3D) images are not yet available, and working around this requires
additional complexity. However, when trying to pinpoint suspicious areas for
PCa in a patient, it is sufficient to be able to identify areas which are relatively
stiffer than their surrounding tissue rather than requiring specific quantitative
values of absolute stiffness. This relative stiffness information can be provided
by strain elastography, which is a technically simpler method.

Current implementations of strain elastography using microUS have relied on
manual tissue compression using the probe face, but this is known to have higher
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inter-observer variability than automated methods [16] due to its complexity and
steep learning curve. In an effort to overcome this known limitation of strain
elastography, it has previously been demonstrated that relative tissue stiffness
can be elucidated from the transfer function (TF) of the tissue’s response to
an automatically generated vibration [8], even being implemented in real-time
[19]. This simplification of the method can allow for much less user-dependent
stiffness imaging, which could make it much easier to be clinically adopted.

In this work, the TF elastography method is implemented for the first time
using the ExactVu™ microUS system, using a probe-mounted voice coil motor
for tissue excitation. The repeatability of this method (as a measure of sim-
plicity for the user) is compared against manual strain elastography using the
ExactVu™ using a commercial quality assurance phantom. In summary, the main
contributions of this work are: the first implementation of TF-based elastogra-
phy using microUS and the first integration of probe-mounted voice coil-drive
multi-frequency excitation for strain imaging using microUS.

2 Methods

2.1 System Overview

Hardware Setup. To acquire freehand elastography images, some additional
hardware is required with the ExactVu™ microUS system. The tissue is excited
with a linear voice coil motor which is rigidly affixed to the TRUS probe such
that the direction of motion is approximately perpendicular to the imaging array.
The excitation frequencies and their relative phases are controlled by a function
generator (33220A, Agilent Technologies, USA), and amplified by a previously
described custom control box, [4], which uses a Lepy LP-2020A signal amplifier
(Lepai, Shenzhen, China). The overall intensity of the signal, and thus the tissue
excitation, can be changed by using either a physical knob on the control box
or within the custom software controlling the function generator. This setup can
be seen in Fig. 1.

Imaging and Excitation Parameters. The voice coil is driven using a sum
of sinusoids from 1–10 Hz, with phase offsets chosen to produce a waveform
without major constructive interference between the frequencies such that the
local maxima are relatively uniform in amplitude. To do so, the phase offsets
were sampled randomly from a uniform distribution between 0 and 2π until the
above condition was met. These same phase offsets were then used for every
imaging session. This excitation can be described as:

10∑

n=1

sin(2πnt + θn) (1)

where t represents time (in seconds) and θn represents the phase offset for each
frequency.
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Fig. 1. Our imaging setup including the ExactVu™ microUS device, imaging phantom,
and mechanical excitation hardware.

The majority of PCa tumours occur in the peripheral zone [14], which should
be sufficiently covered by the imaging depth of 30mm chosen for this work. A
single focal zone was used, set at approximately 25mm. Our choice of settings
resulted in a frame rate of 25Hz, ensuring that even our maximum excitation
frequency (10Hz) fell below the Nyquist frequency for this frame rate (12.5Hz).
The cine capture feature of the ExactVu™ system was used, and the radiofre-
quency (RF) data was saved and transmitted automatically over the network to
another computer for immediate processing and display.

Image Processing. Tissue displacement is tracked in the RF images using a
speckle tracking algorithm [25], and this was then used to calculate the frequency
response of the tissue to estimate relative elasticity values, as described below.

The mechanical properties of tissue can be modelled by a one-dimensional
model of springs, dampers, and masses which are assembled as Voigt elements,
as previously explored in [7]. If this linear network is excited by a waveform
consisting of a single frequency, we expect the displacements and local strains
will maintain the same frequency, but have different amplitudes and phase lags.
This will hold true if the excitation consists of multiple frequencies, as in our
case, and the spectra of displacements and strains will cover the same range of
frequencies as the input.
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The TF between the applied force and displacements has been previously
studied [21], including the case where the applied force cannot be accurately
measured. In this case, the displacements are taken relative to a common ref-
erence location in the image. When this common reference location, arbitrarily
chosen as the center of the image in our case, is defined as element j, and the
ith element is the block of pixels currently under investigation, the TF of this
system is defined as:

Hj
i (ω) =

Pxixj
(ω)

Pxixi
(ω)

(2)

where Pxixi
(ω) is the power spectral density of element xi(t), and Pxixj

(ω) is
the cross-spectral density between elements i and j.

Tissue stiffness can be estimated by averaging the magnitude of this TF over
a range of low frequencies where it is approximately constant. Here, we calculated
the TF, Hj

i (ω), using 20 image frames. Each patch used for analysis was 28 RF
samples in the axial direction, with 50% overlap.

Manual Strain Imaging. To validate TF imaging using microUS, we com-
pared it to manual strain imaging, which has been previously implemented on
the ExactVu™ system [3]. To briefly recap this previous implementation, com-
pression was manually applied using the probe face at a frequency of approx-
imately 1Hz, and tissue displacement (δ) was tracked using the same speckle
tracking algorithm as our TF method [25]. The strain (ε) was then calculated
by finding the spatial derivative of |δ| along the axial direction of each RF line,
described by

ε =
d|δ|
dx

(3)

A Gaussian smoothing filter with an anisotropic kernel (with sigma values of
5 along the x axis and 3 along the y axis) was applied to ε in an effort to reduce
noise in the resulting image.

2.2 Phantom Validation

Validation of this method was performed using a commercial quality assurance
elasticity phantom, namely the CIRS 049 (Computerized Imaging Reference Sys-
tems, Norfolk, VA, USA). Imaging was performed on its four small (10mm diam-
eter) spherical inclusions. The stiffness of each inclusion increases from Type 1
to Type 4, with Type 4 being the stiffest. Imaging was performed freehand in
order to best mimic the expected future clinical environment.

Results are based on 10 acquisitions using the TF method and 3 acquisitions
(each consisting of 59 frames) using manual compression for each inclusion.
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Quantitative Evaluation. We compared our TF method to manual strain
imaging using strain ratio (SR) and contrast to noise ratio (CNR), as defined in
[3], in order to obtain a pseudo-quantitative assessment of the resulting images.

The interquartile range (IQR), which is the difference between the 75th and
25th percentile values, of these two metrics (SR and CNR) were calculated and
are presented in Table 1.

The inclusion and background were manually segmented in MATLAB (The
Mathworks, Natick, MA, USA), where the inclusion was a circular region of
interest (ROI) drawn to include the spherical inclusion’s imaged cross section,
and the background ROI was a rectangle in a representative section of the image
to one side of the inclusion. These were drawn for each TF image output, but
because of the high variability in manual strain images, as seen in Fig. 3, the
segmentation was done on the best frame of the series and then mapped to the
remaining 58 strain elastography frames.

Qualitative Evaluation. Qualitative evaluation between manual strain and
TF imaging was performed by comparing the best and worst images from each
method, to get a sense of the variability in the images. The determination of
the best and worst frames was done subjectively by considering how visible the
inclusions were in each frame.

3 Results

3.1 Quantitative Evaluation

The results of our quantitative evaluation are shown graphically in Fig. 2, and
IQR values are shown in Table 1. In almost all cases the inter-image variability, as
determined by the IQR for SR and CNR measurements, is demonstrably better
for our TF method.

Fig. 2. Boxplots comparing the SR and CNR values of the same phantom inclusions
imaged using our proposed TF based method and previously published manual strain
elastography using ExactVu™ microUS. IQR values of these boxplots are shown in
Table 1
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Table 1. Interquartile range (IQR) values for four inclusions, imaged with both elas-
tography methods. The lower IQR for each inclusion is bolded.

Strain Ratio IQR Contrast to Noise Ratio IQR
Transfer Function Manual Transfer Function Manual

Inclusion 10.07 1.52 0.30 1.27
Inclusion 20.18 1.69 0.80 0.43
Inclusion 30.05 0.74 0.19 1.79
Inclusion 40.08 2.87 0.54 0.82

3.2 Qualitative Evaluation

A qualitative comparison of the best and worst frames for TF and manual strain
imaging can be seen in Fig. 3. To further highlight the improved repeatability
of our TF method, the display parameters were kept constant between all four
displayed TF images, but were adjusted for the manual strain images individually
to match the contrast of the TF images for display purposes.

Fig. 3. A qualitative comparison of the best and worst frames acquired using the TF
and manual strain methods for the softest and stiffest inclusions. This demonstrates the
improved repeatability of the TF method, as compared to manual strain elastography.

4 Discussion

In this work we describe and validate the first known implementation of TF-
based elastography using the ExactVu™ microUS system in order to simplify the
acquisition of elastography images for PCa detection. We demonstrate its abil-
ity to accurately identify inclusions which have different mechanical properties
than their surroundings, and particularly that it can do this with less variability
between images than manual strain elastography, and should require less user
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training. As can be seen in Fig. 3, this system is more effective at identifying
inclusions which are stiffer than their surroundings, rather than lesions which
are softer. This has relevance to our proposed clinical application of PCa detec-
tion, as cancers tend to be stiffer than their surroundings, rather than softer [22].
Although a major component of the novelty of this work is the implementation
of TF imaging using state-of-the-art microUS, this method can be implemented
on any system which can provide access to RF image data.

4.1 Limitations

There are some limitations to this study, which are necessitated by the differences
between TF-based and manual strain elastography. The TF method uses a series
of 20 frames to calculate the frequency response of the tissue. However, manual
strain just uses the displacement measured between two adjacent frames in the
time series. Having more frames included in each TF image may inherently
improve its reliability as a form of averaging, but we were unable to control for
this effectively since it is part of the proposed benefit of this method.

4.2 Future Work

Future work will include optimization of this method to allow for real-time imple-
mentation, such that it can be used to guide prostate biopsy procedures. We also
plan to integrate the voice coil motor into a system similar to the one proposed
in [4] for clinical imaging. It has also been shown that the phase of the TF can
be used to determine the viscosity of the tissue under investigation [7], which
can provide an additional parameter to identify areas suspicious for harbouring
PCa.

5 Conclusion

We demonstrate the first implementation of TF-based strain imaging using
microUS. We compared this to previously-published manual strain elastogra-
phy using the same microUS system using both quantitative and qualitative
methods, demonstrating our method’s improved repeatability, which we expect
will allow for better eventual clinical adoption.
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