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Abstract—Force/torque sensing on hand-held tools enables
control of applied forces, which is often essential in both tele-
robotics and remote guidance of people. However, existing force
sensors are either bulky, complex, or have insufficient load rating.
This paper presents a novel force sensing modality based on
differential magnetic field readings in a collection of sensor
modules placed around a tool or device. The instrumentation
is easy to install and low profile, but nonetheless achieves
good performance. An optimization-based design procedure is
also introduced. The modeling, simulation, and optimization of
the force sensor are described and then used in the electrical
and mechanical design and integration of the sensor into an
ultrasound probe. Through a neural network-based nonlinear
calibration, the sensor achieves average root-mean-square test
errors of 0.60 N and 0.037 Nm compared to an off-the-shelf
ATI Nano25 sensor, which are 1.17% and 1.63% of the full-
scale range respectively. The sensor has an average noise power
spectral density of less than 0.0001 N/

√
Hz, and a 95% confidence

interval resolution of 0.0086 N and 0.0628 Nm. The practical
readout rate is 1.3 kHz over USB serial and it can also operate
over Bluetooth or Wi-Fi. This sensor can enable instrumentation
of manual tools to improve the performance and transparency
of teleoperated or autonomous systems.

Index Terms—Force Torque Sensing, Hall effect, Teleoperation,
Haptics, Calibration, Ultrasound

I. INTRODUCTION

Force/torque sensing instrumentation of manual tools has
many useful applications. For example, it can be valuable in
medical ultrasound (US) where force is an important parameter
to control, as it determines image quality and the visibility of
anatomical structures. For teleoperation and remote guidance,
haptic feedback is essential to make the interaction intuitive
and realistic for the operator. Force/torque measurement is
therefore particularly important in tele-robotic US procedures
[1]–[5], or for “teleoperating” novice people in performing
tests through a mixed reality interface [6], [7]. In addition,
sonographers often face increased incidence of musculoskele-
tal injury due to the awkward application of loads during
exams [8]. This can lead to discomfort for the patients as well,
both of which could be reduced through safety monitoring
with a force sensor. Furthermore, for US training [9], [10],
skill assessment [11], and tele-guidance [12], [13], the applied
forces are valuable. Autonomous robotic US also uses force
control [14], [15], and for learning from demonstration-based
approaches to AI-guided US, data including forces must be
collected from US exams [16], [17].

However, force/torque measurement on an US probe is
difficult as radiologists resist added bulk, weight, and cable
pull. Moreover, the sensor cannot be placed on the face of
the probe, in the direct load path, as it would disrupt image

formation. The usual approach for instrumenting US probes
has been placing off-the-shelf (OTS) force/torque sensors
between the probe and an external shell which is held by
the user [2], [18]–[21]. This approach makes the probe bulky,
heavy, and difficult to grasp, is expensive, and introduces
cable pull. Because the force sensor cannot be placed near
the US transducer’s face which is in contact with the patient,
it requires high torque capability, leading to high cost and
limited availability. A different approach by Huang et al.
placed small piezoresistive pressure transducers on either side
of an US transducer array [22], but this measures only one or
two degrees of freedom (DOFs) of force information and may
interfere with the imaging. Most of the robotic US systems
mentioned in the last paragraph have a force sensor on the
robot end-effector, which is of course infeasible for manual
US. It is also limiting if a generic grasper is used to interact
with different objects. The same factors are true for any
other manual tool, where the tip is used to interact with the
environment and should not be covered, and the handle should
not be made bulky or heavy.

We thus undertook to design a low-cost, low-profile, easy-
to-fabricate and use sensing solution for manual tools to enable
force feedback and control in remote guidance or robotic
teleoperation, as well as the many other applications. There
are multiple potential modalities for force/torque sensing,
reviewed in [23], [24]. These include strain gauges [25], fibre
Bragg gratings [26], elastomeric transducers [27], piezoresis-
tive pads [28], optical deflection sensing [29], and capacitive
sensing [23]. Each modality was evaluated and/or tested [30],
but each had issues. In particular, optical sensing requires
precise fabrication to align the slit with the LED and pho-
todiode, which involves a relatively complex adjustment step,
and the components use more space than is desirable around
a manual tool [31]. Piezoresistive transducers require precise
pre-loading so all axes contact properly at all times (i.e. they
cannot measure negative pressures), and effective elastomeric
sensors are not yet commercially available [32]. We tested
several models of piezoresistive transducers which showed
large hysteresis and inter-axis coupling [30]. Conversely, strain
gauges require careful surface preparation, material selection,
and manufacture of the flexure, leading to higher cost and
complexity [25]. Additionally, installation and removal would
be time consuming, which could impede the sanitization of
medical tools, eg. US probes, between procedures. Capac-
itive sensing again involves more complex electronics and
careful fabrication because high resolution position sensing
is normally only possible with small distances between the
capacitor’s plates [23].
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Magnetic sensors, including Hall effect and anisotropic
magneto-resistance (AMR) sensors, have also seen limited use
for force measurement. Jones et al. and Kyberd et al. position
a Hall effect sensor near a magnet on a flexible structure
such as the fingertip of a robotic grasper to sense when a
single-axis force is applied [33], [34]. Initial work on a similar
approach using a 3-axis AMR sensor is introduced by Yu et
al. [35]. AMRs are also used for position sensing [36], and
present some advantages over Hall effect sensors, including
better sensitivity. However, they require a Wheatstone bridge
configuration which would add significantly to the size and
complexity of a sensor. An interesting human finger tip force
sensor using the Hall effect is introduced in [37], but it is
specifically usable only with a human finger. Conversely, a
3-axis force sensor with Hall effect sensors and magnets was
designed in [38]. Again, this uses single Hall effect sensors
axially offset from magnets. To achieve sufficient signal, the
sensor relies on large deflections and cannot be miniaturized.
As a result, the presented device is bulky and relatively heavy,
with a small full-scale range, and the response is non-linear.

Instead, we previously introduced a multi-axis force sensing
approach using Hall effect sensors in a differential config-
uration [30]. In that preliminary work, the sensing modality
was described and shown through simulation, and in one-, and
three-axis tests, to be effective for force and torque sensing.
The best-case deflection resolution of a single transducer was
found to be 856 nm, and for a 3-axis jig with a linear
calibration, the RMS error was approximately 10.37%.

In this paper, we build on the prior work through the
following contributions. We introduce

• A physical model, simulation, and automated
optimization-based approach for the force sensor
integration into an arbitrary tool,

• The electrical design, communication architecture, and
firmware of miniaturized printed circuit boards (PCBs)
for the sensor,

• A novel 3D-printed suspension design, characterization,
and subsequent selection using the simulation,

• The mechanical design, fabrication, and integration of the
force sensor into an ultrasound probe, informed by the
optimization,

• Linear and neural network-based calibration of the ultra-
sound probe force sensor,

• Analysis of the calibration, speed, noise characteristics,
sensor orientations, and mechanical design, and verifica-
tion of the simulation and optimization.

In the following sections, we first briefly explain the modal-
ity and sensing concept (Section II-A) before describing the
above contributions, designs, and tests in Sections II, III,
and IV respectively. The final design and integration into an
ultrasound probe is shown in Fig. 1.

II. METHODS

A. Differential Magnetic Force Sensing

As previously described [30], differential magnetic force
sensing (DMFS) uses a collection of n sensor modules placed
around a tool or device. Each sensor module consists of two

Fig. 1. Design and integration of 6-DOF force sensor onto a C3HD 3
ultrasound probe (Clarius, Vancouver, BC), with inner scaffold, compliant
suspension, outer shell, and electrical integration.

adjacent Hall effect sensors, mounted on a thin shell around
the tool, and a small permanent magnet mounted opposite the
sensors on the tool itself. The shell is attached to the tool by
a compliant suspension. When no load is present, the magnet
of each sensor module is centered between its two Hall effect
sensors. However, when the user applies a force to the shell,
the tool deflects relative to the shell, and thus the magnets
move relative to their sensor pairs, which causes a voltage
response. An overview is shown in Fig. 2. By calibrating
the sensor module deflection outputs with the stiffness of the
suspension, forces and torques can be computed.

Fig. 2. Measurement concept of DMFS sensors. Taking the difference of the
Hall effect sensor outputs, all displacements cancel out except along the x
axis, where it is sensitive and very linear in the ±2 mm range (R2 = 0.999
[30]). For rotations about y, the response is small and the magnet is highly
constrained. The magnet is offset 1-1.5 mm along the z (axial) direction.
Motion along that axis can be detected by summing the sensor outputs.

In particular, taking the difference between the two Hall
effect sensor outputs, the response is highly linear for magnet
displacements across the sensors (i.e. the x or measurement
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axis in Fig. 2). For all other axes, the response cancels out or
is very small. Taking the sum of the two sensor outputs gives
information about the axial (z axis) offset, but also the lateral
(y-axis). Hence, each sensor module is considered a 1-DOF
transducer, though there is some information about additional
DOFs. Thus, approximately n modules are needed for n-axis
force/torque measurement.

B. Physical Model
Before designing the force sensors, the concept was mod-

eled in detail, and the model was verified through simple tests
with one Hall effect sensor, followed by single-SM tests and
finally a 3-DOF test [30]. This modeling is now extended to
a general multi-DOF case to aid in the design of the 6-DOF
configuration.

To measure the forces and torques applied to an arbitrary
manual tool, we place a thin shell around the handle of
the tool, where the user grips it. The shell is attached to
and separated from the tool using a compliant suspension
consisting of m discrete connection points. For example, a
connection point could be a rubber pad. Between the tool and
the shell are also n SMs.

The suspension members can be placed in any reasonable
configuration that supports the shell relatively uniformly and
symmetrically. However, the sensor locations affect the achiev-
able accuracy and numerical stability of the calibration. Thus,
we must intelligently select their positions. To do so, we first
develop a mathematical model of the forces and displacements
in the suspension when the shell is held fixed and a force is
applied to the tool. We then develop a simulation in MATLAB
that implements this model, taking in a set of sensor positions
and applied forces, performing a calibration, and outputting
the mean-squared error (MSE) of the simulated “measured
forces”. This simulation can be run repeatedly for different
sensor positions, and the errors compared to determine the
optimal sensor configuration.

1) System Mathematical Model: In the following, we use
coordinate-free notation for simplicity. Practical considerations
of coordinate frames for the simulation are described in
Appendix I. Under an applied wrench wwwj = [fff⊤

j τττ⊤j ]
⊤ (force

fff j and torque τττ j), the jth suspension member undergoes a 6-
axis deformation, δδδj = [δδδ⊤tj δδδ⊤θj ]

⊤, according to Hooke’s law
(for small deformations):

wwwj =KKKjδδδj (1)

Where KKKj is the rank 2 compliance tensor of the sensor
element. The matrix value of KKK in a practical coordinate
system is described in Appendix I, and we performed tests to
find its elements, described in Section III-B1. The rotational
part of the deflection, δδδθ, is a vector of small angles since the
motion is very constrained. Additionally, we assume the shell
and tool are rigid bodies, so we can express the individual
deflections in terms of the overall deflection at the tool tip:

δδδj =

[
δδδt + [δδδθ]×xxxj

δδδθ

]
(2)

where xxxj is the position of the jth suspension element, and
[vvv]× is the skew symmetric matrix equivalent to the cross

product such that [vvv]×uuu = vvv × uuu. Now suppose a wrench,
WWW , is applied at the tool tip. From statics:

WWW =

m∑
j=1

[
I3 03

[xxxj ]× I3

]
wwwj (3)

where Ik and 0k are the k×k identity matrix and zero matrix
respectively. Substituting in Equations 1 and 2, we find

WWW =

m∑
j=1

[
I3 03

[xxxj ]× I3

]
KKKj

[
δδδt + [δδδθ]×xxxj

δδδθ

]
(4)

Equation 4 can be solved numerically for δδδt and δδδθ, taking
the coordinate frames into account (Appendix I). Having
solved this, the result can be substituted into Equation 2
to determine the δδδj’s. These give the suspension member
wrenches, wwwj by Equation 1.

In the force sensor, the sensor and suspension element loca-
tions are not required to coincide. The sensor locations, {sssi},
can be arbitrary, though constrained by practical mounting
considerations, and the displacement at the sensors can be
determined by substituting sssi into Equation 2 instead of xxxj .
Furthermore, displacement sensor elements generally measure
along just one axis in addition to the normal direction. Thus,
one must define the sensitive axes, ŝi, in addition to the sensor
positions. The normal directions, n̂i, are given by the sensor
positions and the tool geometry. To simulate a measurement,
the calculated δδδi must be projected onto the normal and
sensitive axes: [

δs
δn

]
=

[
δδδi · ŝi
δδδi · n̂i

]
(5)

To make this more realistic, however, we used data from
the single SM test [30] to create a look up table (LUT) of SM
output as a function of magnet displacement, δδδj . Readings
from both Hall effect sensors were recorded for displacement
sweeps across the Hall effect sensor pair at axial offsets of
0.5 to 2.5 mm, and lateral offsets of 0.0 to 1.5 mm from
centre, both in 0.5 mm increments. Across the sensor pair, the
displacement was measured in 0.1 mm increments. A cubic
spline interpolation between the measured points was used
to compute the sensor responses at a given point. This is
illustrated in Fig. 9.

2) Force Measurement Simulation: It is now possible to
formulate a simulation algorithm with the model. Suppose we
have m suspension members and n sensing elements, and a
three dimensional mesh of the tool. This is essential in any
case to design the shell, and can be created in computer aided
design (CAD) software or by using a 3D scanner.

First we choose the desired suspension positions on the
mesh, and thus also obtain their orientation. A constraint set,
D is defined for the possible SM positions. The constraint
set is application dependent. In the example of an ultrasound
probe as seen in Fig. 9, one could constrain the configuration
to have two sensors per wide face and one on either side, and
to have a certain minimum spacing between sensors. Once the
SM locations are randomly initialized within D, the program
can solve the equations presented in Section II-B1 in order to
simulate an applied force and subsequent measurement. This
is shown in Algorithm 1.
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Algorithm 1 Calibration Simulation
Generate a random matrix of N wrenches,
W = [www1, ...,wwwN ]
for wwwk ∈W do

Solve Equation 4 for δδδt
for i ∈ {1, . . . , n} do

Substitute δδδt and sssi into Equation 2 to find δδδi
Use the LUT to simulate measurement

end for
Place the measurements in column k of X ∈ R2n×N

end for
Determine mapping, C, from X to W (calibration):

C = WX⊤(XX⊤)−1

return RMS error of calibration and cond(C).

The calibration in the second last step of Algorithm 1 can
be achieved in a myriad of ways. The simplest, which assumes
the system is linear, is to determine a calibration matrix, C,
as the least squares linear mapping between the set of SM
measurements X and the actual measured forces W :

W ≈ CX

C = WX⊤(XX⊤)−1 (6)

Alternatively, a relatively shallow neural network can be
trained to learn the nonlinear mapping, leading to far more
accurate results, as shown in [39]. This should be done in the
final design of the instrumented tool, but it is impractical to
re-train a neural network repeatedly during the sensor position
optimization step. Hence, we use the linear approach during
the optimization.

3) Sensor Position Optimization: With the simulation in
place, it is possible to optimize the locations of the sensors
to obtain the most accurate and numerically stable calibration.
The simulation is run repeatedly for different sensor configura-
tions, S, and measurement axes, {ŝi}. The calibration matrix,
C(S, {ŝi}), is determined for each trial, and the calibration
error and condition number of C are evaluated for each.

Bicchi describes the importance of the condition number
[40], showing that the a priori estimate of the relative mea-
surement error, ep, is given by

ep ≤ λ
κ(C)

1− ϵκ(C)
(7)

where ϵ is very small and λ is a constant that depends on
the transducers. Thus, a large condition number can lead to
poor accuracy even with careful calibration [41]. As a rule of
thumb, k digits of accuracy are lost when κ(C) is 10k [42].

The configuration with the lowest mean-squared error
(MSE) and condition number is thus chosen according to the
cost function in Equation 8. Here xxxk is the kth column of X ,
i.e. the kth measurement, κ(C) is the condition number, and
α, β are weights.

w(S, {ŝi}) = α
1

N

N∑
k=1

∥Cxxxk − fffk∥22

+β log10(κ(C)) (8)

A reasonable worst-case calibration MSE is if C = 0; then
the MSE becomes the mean squared force magnitude. In Fig.
13, for example, this is 237. The condition number, on the
other hand, may vary by several orders of magnitude, so it is
reduced to the scale of the MSE using the logarithm. Though
the condition number is important, as described above, it only
works for non-redundant designs - i.e. n-axis force sensors
with exactly n transducers [40]. As the simplest, smallest
design is desirable in our case, we do not wish to introduce
extra sensor modules, so this is acceptable. However, the
assumption of linearity is strong and later sections compare the
performance to a non-linear, neural network-based calibration.
Hence, we also include the calibration error itself in the cost
function.

Thus we arrive at the optimization problem in Equation 9.

S∗, {ŝ∗i } = min
S,{ŝi}

w(S, {ŝi}) (9)

s.t. S ∈ D

This is not possible to solve analytically because there is
no analytical expression for X(S, {ŝi}) or C(S, {ŝi}), which
result from repeatedly solving a large set of equations. Thus,
we must rely on a search algorithm to explore the solution
space.

Though each sensor moves on a relatively small two di-
mensional surface, there are n SMs, so the algorithm is
searching in up to 2n-dimensional space. Thus, a brute force
method is impractical. Further, the optimal sensing axis, ŝj ,
of each transducer is unknown, which adds to the complexity.
Depending on the application, it makes sense to strongly
constrain the measurement axes. We constrained the sensing
axes to be just horizontal or vertical, tangent to the probe at
the given point.

The optimization problem was solved using simulated an-
nealing [43]. This is described in Appendix II.

III. ELECTROMECHANICAL DESIGN AND SOFTWARE

Fig. 3. Sensor module (top) and master (bottom) PCBs. The low-pass filter
circuit for one Hall effect sensor on the sensor module is also shown.
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A. Electrical Design

Two PCBs were designed for the force sensors: a sensor
module (SM) board and a master board. A 6-axis force/torque
sensor uses a minimum of 6 SMs and one master. These are
described below, and the PCBs are shown in Fig. 3.
Master PCB
The master board takes in all the readings from the SMs,
combines and processes them on an ESP32-WROOM-32e
microcontroller, and sends the resultant force/torque measure-
ments to the host PC or other device. An inertial measurement
unit (IMU) is also included on the board for pose estimation
[44], and communicates over I2C with the ESP32. The micro-
controller has two cores, allowing parallel processing, and two
SPI drivers. Each SPI driver handles three of the SMs, thus
doubling the measurement rate compared to one SPI driver
handling 6 SMs in series. The SPI communication includes
data-in and data-out (MISO and MOSI in Fig. 4 - Master
In/Out, Slave Out/In) buses, as well as serial clock (SCLK),
power (+5V), and ground (GND). These are shared among the
SMs in a multidrop configuration while a separate chip select
(CS) line goes to each individually. In this way, the wiring can
be greatly simplified (See Section V). The layout is shown in
Fig. 4.

A universal asynchronous receiver/transmitter (UART) port
is available to connect the sensor to a PC using a UART-
USB adapter. However, the ESP32 additionally has Wi-Fi as
well as Bluetooth classic and low energy (BLE) capabilities.
We wrote firmware to communicate the sensor readings to
a HoloLens 2 (Microsoft, Redmond, WA) over BLE for a
teleoperation application [6], [45] but found that the rate was
too low. Instead, UART was used for all the presented tests.
Other options are discussed in Section V. The configuration
of the master PCB and its communications is shown in Fig. 4.

Fig. 4. Communication architecture of sensor modules and master PCB. The
pins of the 8-pin SPI connectors are shown on the right.

Sensor Module PCBs
Each SM consists of two Hall effect sensors, used for the
differential measurement, a low-pass filter for each sensor,
a 12 bit, 100ksps analog-to-digital converter (ADC), and
a connector for communication with the master PCB. The

filtering and the ADC were placed in close proximity to the
sensor to reduce noise.

A passive second order low-pass filter with the component
values shown in Fig. 3 was chosen after SPICE simulation with
various passive and active configurations due to its simplicity
and effectiveness. The -3 dB cut-off frequency was set to
400 Hz since interactions with stiff environments can lead
to high force bandwidths. The phase delay is < 1◦ until
approximately 10 Hz, which is the maximum typical for forces
applied by the human hand [46].

The SMs are designed as squares with the Hall effect
sensors centrally located so that the SM can be rotated by
multiples of 90◦ to change the measurement axis without
changing the mounting area.

Fig. 5. Mechanical components of ultrasound force sensor, including inner
scaffold and outer shell (A), suspension elements (eg. D), and the complete
assembly (B). C shows the UART port for communication with a PC.

B. Mechanical Design

Given the sensor electronics and optimal SM locations, we
designed the mechanical components. These were subject to
several design objectives, listed below.

• Ease of assembly - the sensor should be easy and fast to
install and remove from the object. For ultrasound, this
allows disinfection between procedures.

• Ergonomics - the final device should be as low-profile as
possible, adding minimal bulk to the ultrasound probe.

• Force range - the probe should displace about 1-1.5 mm
(the linear range of the sensor) for a 25 N applied force,
as is a typical maximum in ultrasound procedures [30].

• Stiffness - for the sensing concept to work, the outer shell
must deflect much less than the deflections in the SMs.

To this end, the ultrasound probe force sensor consists of
an outer shell containing the SMs and master PCB, and an
inner scaffold containing the magnets. The mechanical parts
are shown in Figs. 5 and 6. The inner scaffold clamps directly
onto the ultrasound probe while the outer shell connects to
the scaffold through the suspension. All three were fabricated
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Fig. 6. Ultrasound force sensor mechanical and electrical integration and mounting on calibration jig. The SMs are labeled numerically for later reference.
The master PCB shown here has a separate port for each SM, and each was wired separately. Significant improvements in the wiring and PCBs are discussed
in Section V.

with a Form 3+ stereolithography 3D printer (FormLabs,
Sommerville, MA), using different materials.

The scaffold, as it is completely supported by the transducer
and has no structural role, was printed from 2 mm thick
FormLabs standard white resin. The shell was printed from
FormLabs Rigid 1000 polyurethane resin for toughness and
rigidity, with a tensile modulus of 920 MPa and bending
modulus of 750 MPa. The main wall thickness was 2.5-3 mm,
with some sections thicker or thinner as needed. This feels
very solid and we did not observe any flexing. The rigidity
of the shell was tested using finite element analysis (FEA)
in SolidWorks (SolidWorks Corp., Waltham, MA), by placing
elastic supports with the known suspension stiffness values,
and applying a 25 N force on one side of the shell. The results
are shown in Section IV-F.

Finally, the suspension was also 3D printed from FormLabs
Elastic 50A resin, with 50A Shore durometer. The design
of the suspension is described in Section III-B1. The shell
and scaffold were based on a CAD model of the ultrasound
probe, and prototyped several times to ensure precise fit. Both
shell and scaffold were fabricated in two halves. The scaffold
halves snap together by friction fit tabs and are held by the
suspension elements. Small magnets embedded in the edges of
the outer shell hold the two halves in place (see Fig. 6), though
the friction from the suspension flanges and the grip of the
user make this relatively superfluous. Throughout testing, the
design never opened or shifted unintentionally. It was found
to be easy and quick to install, comfortable to hold, robust,
and stiff.

1) Suspension Tests: Printing the suspension allowed us to
integrate it easily into the design by fabricating the suspen-
sion element and mounting flanges as one contiguous part.
Furthermore, the stiffness could be tuned to the desired level

Fig. 7. Suspension test jig and sample 3D-printed elements showing the inner
and outer diameter.

by modifying the part’s shape. In particular, a hollow cylinder
shape was used with configurable inner diameter (ID) and
outer diameter (OD). This is shown in Fig. 7. A flange with
two mounting holes was included on either end of the cylinder
so it could be screwed into the scaffold and shell. The flanges
were offset by 90◦ to facilitate installation with a screw driver.

To determine the stiffness matrix, K, described in Section
II-B, a test jig was created for the suspensions. The measured
K value could then be input to the simulation to determine if
the deflection response was as desired, and thus a suspension
element shape could be selected. The test jig is shown in
Fig. 7 and consisted of a manual 3-axis stage on which an ATI
Nano25 force sensor (ATI Industrial Automation, Rochester
Hills, MI) was mounted, and a fixed flange on which a mount-
ing plate was attached. The suspension element was connected
to the mounting plate and an adapter on the ATI force sensor.
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Fig. 8. Test jig for torsional rigidity of suspension elements.

The stage was then moved by incremental, known offsets,
and the resultant force was measured. A similar setup with
a rotational stage was used to measure the rotational stiffness,
as shown in Fig. 8. The results are shown in Section IV-A.

C. Integration

The integration of the electrical and mechanical parts on a
3D-printed dummy ultrasound probe as part of the calibration
jig is shown in Fig. 6. As explained in Section III-A, the wiring
has been cleaned up significantly since these tests, so separate
cables are not needed for every SM (See Fig. 16).

The installation process on the ultrasound probe is simple
and fast, taking approximately 1-2 minutes. First, the inner
scaffold (with magnets installed and suspension elements
screwed to one half) is snapped onto the probe, and the
suspension elements are screwed to the other half. This takes
the majority of the time. Next, the probe with the scaffold
is placed in one half of the outer shell, and the other half is
fitted on top, making sure the suspension elements are sitting
properly. This takes just a few seconds.

The master PCB can then be plugged in to any USB port
to receive power. A reset button on the back of the PCB,
accessible through a small hole in the outer shell, is pressed
to start the firmware. In case of an issue with the firmware, the
reset button is always accessible, and the PCB can be flashed
with new firmware via the USB cable.

The firmware, written in C using the Espressif IDF and
ESP libraries, runs a real-time operating system (FreeRTOS)
on the dual-core CPU. This enables multi-threaded parallel
processing of the sensor readings from the two separate SPI
buses as well as the IMU. Thread-safe first-in first-out queues
with limited capacity (to avoid keeping old samples) are used
to synchronize readings between threads and send them to the
destination device.

D. Calibration

As shown in the modeling section and in previous work
[30], the differential sensor output is very linear and the
forces can be computed from linear equations. Thus, a linear
calibration may, in theory, effectively convert from the raw
Hall effect sensor readings to the applied forces and torques.

However, there are many potential non-linearities that are
unmodeled. These include flex in the mechanical parts, non-
linear bending and hysteresis of the suspension elements,
saturation of the Hall effect sensors, shifting of the suspension
or shell, and slight inconsistencies in the magnets or sensors
and how they are mounted, among other factors. Thus, it is
likely that a non-linear calibration would outperform the linear
one, as has been shown in similar situations [39].

Therefore, both linear and non-linear calibrations were car-
ried out and compared. The 2n raw Hall effect sensor measure-
ments are input to the calibration rather than the difference and
sum since this is more flexible and the calibration can learn to
take the difference if needed. For the linear calibration, linear
least squares was used to determine a 6×12 calibration matrix
from raw voltages to force/torque. For non-linear calibration,
neural networks were used. Hyperparameters of hidden layer
sizes, number of hidden layers, activation functions, cost
function, optimization algorithm, and momentum were varied
to determine best architecture.

For the calibration tests, a jig was built to gather data. A
3D-printed dummy ultrasound probe was mounted directly to
an ATI Nano25 sensor which was rigidly attached to a table.
The sensing hardware was installed on the dummy probe as
seen in Fig. 6. Both the master PCB and the ATI sensor were
connected to a Windows PC, and samples were recorded with
timestamps using a Python script. The data was aligned using
the timestamps, and resampled to line up element-wise. For
the numerical calibration, the ATI torques in Nm were first
multiplied by 10 so their scale was the same as the forces.
The input Hall effect sensor readings were scaled down by
212 to fall between 0 and 1.

A random series of forces and torques was applied to the
ultrasound probe while 20000 samples were recorded at 60 Hz.
This was repeated three times, and the data sets combined.
The 60000 samples were split 75%/25% into a training and a
testing set, and 5-fold cross-validation was used on the training
set for hyperparameter tuning. An additional measurement
was taken without applying any forces, to study the noise
characteristics, and a further set of forces and torques (20000
samples) was recorded after disassembly and reassembly to
evaluate the calibration under potentially slightly different
conditions.

IV. RESULTS

A. Suspension Tests

A variety of inner and outer diameters were tested for the
suspension elements. In each case, the response was linear,
with a much higher K value in axial compression/tension than
in bending. The K value for each axis was determined by
fitting a line and taking the slope. The results are outlined in
Table I and Fig. 10.

Substituting these values into the simulation, the OD-ID
combination of 6-4 mm gave the desired response. This was
therefore fabricated in larger quantity and installed in the
device.
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Fig. 9. Simulation results from simulated annealing for SM configuration optimization. The look-up-table for sensor output as a function of magnet displacement
is shown on the bottom center, where each red box is a Hall effect sensor. The probe mesh with suspension locations (black) and explored sensor configurations
(color map by cost value) are on the right. The final, optimal locations are shown in pink. The associated cost and annealing temperature are plotted in the
top centre, showing convergence to a low error value with an exponential cooling schedule. The simulation output and calibration with the optimal sensor
configuration is shown on the left. The three axes of force and torque were similar, so only z is shown as an example. All errors are listed in Section IV-B.

Fig. 10. Suspension test results from four of the five configurations in Table I.
The responses are linear and the z axis (compression) is consistently much
stiffer than x and y (bending). The plots are labeled OD-ID.

B. Simulation

The optimization procedure described in Section II-B was
carried out with the mesh of a C3HD 3 ultrasound probe (Clar-
ius, Vancouver, BC), and the chosen suspension elements. The
suspension locations shown in Fig. 9 were used, and the SM
locations limited to two per wide face and one per narrow face,
for a total of six. The resulting optimal configuration is shown
by the pink marks in Fig. 9, and the corresponding calibrated
forces and torques are also shown. The RMS linear calibration
error for force and torque were [0.703, 1.39, 0.521] N and

TABLE I
SUSPENSION TEST RESULTS IN UNITS OF N/M. THE TORSIONAL STIFFNESS

(Kθ ) IS IN NMM/RAD.

OD-ID (mm) Kxx Kyy Kzz Kθ

5-3 1421 1571 11308 14.5
6-4 1472 1749 13335 24.9
8-5 2429 2580 27435 51.5
7-4 3035 3192 26321 34.1
8-3 4847 3834 42655 -

[0.068, 0.083, 0.029] Nm respectively. In the Discussion
section, these are compared to the values obtained in the real
system, which are shown below.

C. Calibration

With a linear least squares calibration (performed on the
training data), the RMS calibration error between our sensor
and the ATI was (in N and Nm, on the testing data):

eRMS =
[
1.04 1.57 2.06 0.0918 0.0753 0.0545

]
This is shown in Fig. 11, with the calibration applied to the
additional measurement. Here x is to the right in Fig. 6, y is
into the page, and z is up.

The tracking appears good, but the RMS error is relatively
large. Instead, the neural network calibration was tested. In
total, 44 different sets of hyperparameters were checked. It was
quickly found that tanh activation significantly outperformed
ReLU and logistic functions. An ADAM solver with adaptive
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Fig. 11. Calibrated output from the DMFS sensor (dashed lines) compared to
the ATI sensor (solid lines) using a linear calibration. (A) shows forces and
(B) shows torques.

learning rate starting at 0.0005 with a Nesterov momentum
of 0.9 worked best. L2 regularization was also used. With
these settings, different numbers of hidden layers and layer
sizes were tested. The results are shown in Fig. 12A. Using
the elbow method, a 5-layer, 150 neuron-per-layer architecture
was chosen. It outperformed the 4-layer 256-neuron model
despite having fewer neurons. Models with 1, 2, or 3 hidden
layers were clearly underfitting and hardly outperforming
the linear calibration. The chosen architecture achieves RMS
errors of (in N and Nm):

etrain =
[
0.463 0.506 0.532 0.0373 0.0360 0.0253

]
etest =

[
0.544 0.593 0.660 0.0432 0.0403 0.0271

]
The similarity in performance between the training and

testing data sets imply that the model is not overfitting much.
This is discussed in Section V. The error is well under 1 N
and 0.05 Nm in each axis compared to the ATI sensor. The
RMS values of the dataset labels are:

yRMS =
[
5.99 7.32 12.2 0.411 0.371 0.138

]
which implies an approximate percent error of

%e =
[
9.08 8.11 4.35 10.51 9.71 18.3

]
Conversely, the range of the measured forces and torques was

rng(y) = ±
[
48.9 42.6 65.8 2.64 2.49 1.66

]

Fig. 12. (A) Neural network calibration RMS error, averaged over the five
validation folds, versus hidden layer size with different numbers of hidden
layers. (B) The learning curve of the chosen architecture, for both training
and validation loss from the five folds.

so as a percentage of the range, the error was only

%erng =
[
1.11 1.39 1.00 1.64 1.62 1.63

]
As a further test, the calibration network was applied to the

additional, separate measurement. This is plotted in Fig. 13.

D. Rate and Noise characteristics

The rate of SPI data transfer for one SM to the master
board was determined to be 12 kHz with our firmware. Given
that three SMs are read in series, the sampling rate is 4 kHz.
Including synchronization, processing, and communication
delays, the practical readout rate at which the sensor delivered
samples over UART to the PC was reduced to 1276.8±3.3 Hz
on average. This is fast enough for haptics applications where
a control loop of approximately 1 kHz is commonly employed.

From one measurement in which no forces were applied,
we can analyze the noise characteristics of the sensor. The 12
raw sensor measurements are each normally distributed with
an average standard deviation of 1.92 LSBs, or 0.047% of the
full-scale range of 212. When the raw values are substituted
into the calibration found in the previous section, the standard
deviation becomes 0.0043 N and 0.0314 Nmm. With a 95%
confidence interval of 2σ, the force and torque resolution
are 0.0086 N and 0.0628 Nmm respectively. Using a fast
Fourier transform, the average noise power spectral density is
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Fig. 13. Calibrated output from the DMFS sensor (dashed lines) compared to the ATI sensor (solid lines) using the neural network calibration applied to
unseen data from the separate measurement. (Top) Shows all the forces. (Left) Shows a subset for better visualization, and (Right) shows a similar subset of
the torques.

8.867× 10−4 N/
√

Hz and 1.267× 10−4 Nmm/
√

Hz for force
and torque respectively. The noise power spectral density is
shown in Fig. 14.

Fig. 14. Noise power spectral density of the 6-DOF sensor

E. Sensor Module Analysis

In addition to the locations of the SMs, their orientation
is also relevant to the effectiveness of the sensor. The results
presented thus far were obtained using the optimal orientations
found in Section IV-B. Referencing Fig. 6, the measurement
axes of SMs 2 and 4 were vertical, SMs 1 and 3 were
horizontal, and SM 5 and 6’s measurement axes come out

of the page. Using standard ultrasound notation, these are
axial, lateral, and elevational respectively. The latter two SMs
should stay in this configuration because otherwise there are
no sensors sensitive to the force direction out of the page.
However, it is possible that rotating SMs 1, 2, 3, and/or 4 by
90◦ could improve the performance. Therefore, two further
tests were carried out. First, SM1 and 2 were each rotated 90◦

so the sensors were asymmetric, with 1 and 4 vertical, and 2
and 3 horizontal. This is referred to as trial 1. Next, SM3 and
4 were each also rotated 90◦ so now 1 and 3 were vertical, and
2 and 4 were horizontal. This is trial 2. Trial 0 is the original
configuration described above.

Performing the same neural network calibration procedure
for each trial, the RMS validation errors in Table II were
found. The original configuration of trial 0 clearly outperforms
the other two configurations, showing that the optimization
algorithm was effective in choosing the SM orientations, and
also that the SM orientation makes a significant difference in
the sensor performance

TABLE II
RMS VALIDATION ERROR (AVERAGED OVER THE x, y, AND z AXES)

VERSUS SM ORIENTATION. TRIAL 0, THE OUTPUT OF THE OPTIMIZATION
PROCEDURE, PERFORMS SIGNIFICANTLY BETTER THAN THE OTHER TWO.

Trial Horiz. Vert. Force (N) Torque (Nm)
0 SM1,3 SM2,4 0.582 0.042
1 SM2,3 SM1,4 0.801 0.050
2 SM2,4 SM1,3 0.792 0.053
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F. Shell Rigidity

The rigidity of the shell was tested using FEA by placing
elastic supports with the known suspension stiffness values
in their chosen positions. A 25 N force, the maximum experi-
enced in typical ultrasound procedures, was applied to the right
side of the shell. The setup is shown in Fig. 15. Comparing
the deflection on the left and right sides of the shell shows
how much the shell itself deformed versus how much the
suspension moved. On average, the shell deflection was 0.083
mm while the suspension deflection was 0.95 mm. Thus, shell
deformation constitutes 7.8% of the total deflection.

Fig. 15. Finite element analysis of outer shell rigidity. (Left) Shell showing
elastic supports (blue) and applied force (pink). (Right) Shell colored accord-
ing to deflection, with several point measurements made symmetrically on
both sides. The difference between the two sides shows the shell deflection
due to the maximum design force of 25 N. It is on average 0.08 mm.

V. DISCUSSION

Comparing the results from simulation in Section IV-B
and the real system in Section IV-C, we see very similar
errors. Indeed, the real force and torque errors from the linear
calibration are on average within 0.68 N and 0.019 Nm of the
simulated values, which also used a linear calibration. More-
over, the optimal sensor locations are approximately where
one would intuitively place them, and the chosen sensing axes
corresponded with the ones that experimentally performed
best. Thus, the simulation is realistic and the optimization is
effective. It is possible that other orientations, not just vertical
or horizontal, could improve performance. Investigation of this
is left for future work.

Given the different SM orientations, the question arises
which SMs are actually used for forces and torques in which
axis. If only forces in one direction were relevant, some
sensors could be removed, or they could all be oriented in the
same direction. For example, in the current configuration, only
SMs 2 and 4 are sensitive to vertical (z) forces. For x and y
forces, two SMs are directly sensitive to the force and two SMs
have the magnet move axially closer or farther away from the
Hall effect sensors. This could be why the error in z is slightly
higher than in the other two axes. Conversely, for torques,
each axis of load excites responses in four SMs. However,

these are all highly coupled between axes, with overlapping
responses from the SMs for different torques. Thus, the system
is far from being linearly separable, and the more complex
architecture of the neural network is warranted.

However, there is always a risk of overfitting. According to
Heaton, it is rarely necessary to use more than one hidden layer
as this can be a universal approximator [47]. He further gives
a rule of thumb that the number of hidden neurons should be
between the size of the input and output layers. In this case,
that would be about 8 neurons. Hadi et al. used a single hidden
layer with just 5 neurons to good effect [39]. However, from
Fig. 12, a single hidden layer architecture with 5 or 8 neurons
barely outperformed the linear calibration. Conversely, Hagan
states that one can usually avoid overfitting by using

nhid ≤
nsamples

α(Nin +Nout)

hidden neurons [48]. In this case, nsamples = 45000, Nin =
12, and Nout = 6. The factor α should be between 2 and
5. Using these values, less than approximately 500 to 1250
hidden neurons should not lead to overfitting. Indeed, the
chosen architecture uses 750 neurons, which is unlikely to
overfit. The next-best choice was a 4-layer network with 256
neurons per layer, which exceeds 1000 neurons and actually
achieved worse results. Slight improvement in test error could
be gained using 5 layers and 256 neurons per layer, but
this is likely overfitting and the performance improvement is
marginal. Having different numbers of neurons in each layer
was also tested, for example having [50, 150, 256, 150, 50],
but the performance was consistently worse. With the chosen
architecture (5 hidden layers, 150 neurons per layer), the
validation and test errors are similar to the training error,
indicating that the network generalizes well. In comparison,
architectures with fewer hidden layers were clearly underfit-
ting. Regularization was also used, which limits overfitting.
Hence, the chosen architecture is justified and is most likely
not overfitting.

An additional point of concern for instrumenting manual
tools and devices is the added weight. The inner scaffold with
magnets and suspension elements weighs 31.17 g while the
full shell with all electronics shown in Fig. 6 weighs 202.98 g.
In total, this amounts to 234.15 g. New PCBs have been
designed but not yet tested which are substantially smaller
(45% reduction in surface area). These also use a single
flexible PCB with shared data, clock, power, and ground buses
instead of the separate wires in Fig. 6. This will decrease the
weight significantly. A rendering of the updated circuitry and
integration is shown in Fig. 16.

Further improvements to the system are also possible. The
ESP32 processor could be replaced by a field programmable
gate array (FPGA) chip configured as six cores, so each SM
could be processed in parallel for minimum latency. Such a
system is described by Hadi et al. for optical force sensing
[31]. Other hardware modifications could be made, especially
in reducing manufacturing tolerances and exploring stiffer
materials, to obtain more accurate measurements. Currently,
approximately 7.8% of the total deflection is used in deforming
the shell rather than the suspension. Some of this nonlinearity
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Fig. 16. Outer shell with updated PCBs. The master board is miniaturized and
has a button on the opposite face for resetting. The messy wiring is replaced
by a flexible PCB.

is likely captured by the neural network calibration, but a
stiffer material may improve accuracy. AMR sensors could
also be explored, despite the added circuitry which would
increase the size of the sensor modules. In terms of firmware,
for wireless integration into systems, Bluetooth Classic and/or
UDP communication over Wi-Fi should be explored. In the
latter case, the sensor must connect to a Wi-Fi network and
know the IP address of the destination device. To avoid having
to update the firmware manually for every change of network
or device, an initial automatic connection and exchange of
connectivity information over BLE could be used. This is in
fact already implemented, but the UDP communication part
will be tested in future work.

This paper has introduced a sensor modality and
optimization-based design procedure which was tested on one
specific ultrasound probe. Integration into other point-of-care
ultrasound devices using the same approaches will constitute
future work. Beyond ultrasound, many other applications can
also be explored. The Hall effect sensors and signal processing
circuitry could be packaged into a single, very small integrated
circuit which could enable much lower-profile hardware inte-
gration and even a small standalone force/torque sensor.

The benefits of this sensing modality are that it is modular,
non-contact, and thus simple to integrate into a variety of
tools without making them bulky or difficult to assemble. This
enables practical use in medical environments, where the tool
can be removed and cleaned or replaced. The sensor itself can
be disinfected if the PCBs are sealed with a very thin layer of
casting resin. The size and weight are low, and the flexibility
enables the use of optimal design principles. Furthermore, the
mechanical components can all be 3D-printed. This cost is
negligible since integrating off-the-shelf sensors also involves
fabricating a mechanical shell or structure. The electrical
components are inexpensive and require no special preparation
or treatment, so the whole integration of our sensor can be
completed at a small fraction of the cost of existing multi-

axis sensors. This may be important for remote guidance
in low-resource environments. Despite this, the sensor still
achieves good accuracy and low noise. Moreover, the PCB
design facilitates flexible wired or wireless integration into a
variety of systems.

VI. CONCLUSION

This paper has introduced a novel force sensing modality
and optimization-based design and integration procedure for
the instrumentation of manual tools. Made from inexpensive
electrical components and 3D-printed with no special fabrica-
tion procedures or delicate mechanisms, this sensor is low-cost
and easy to reproduce for a variety of applications including
remote guidance of people and autonomous or teleoperated
robotics. Integration into complex systems is simple through
USB, Bluetooth, or Wi-Fi communication with a practical
readout rate of 1.3 kHz over USB. Despite the simplicity, the
sensor achieves good performance through a neural network-
based calibration, with average root-mean-square test errors of
1.17% and 1.63% of the full-scale range for force and torque
respectively. The sensor has low noise and a 95% confidence
interval resolution of 0.0086 N and 0.0628 Nm. This will
hopefully enable more effective tele-guidance, robotics, and
autonomy through force feedback for manual tasks.
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APPENDIX I

A coordinate-free explanation of the system model is de-
scribed in Section II-B. However, to implement this in prac-
tice, coordinate transforms must be taken into account. We
rewrite Equation 1 in the coordinate frame of the individual
suspension element:

w⃗j = Kj δ⃗j (10)

where Kj was measured in Section IV-A. The suspension
members are positioned around the tool to ensure relatively
uniform and symmetric suspension. Each member has a po-
sition x⃗j and rotation Rj ∈ SO(3) relative to the coordinate
frame of the tool. Thus, the member pose is a homogeneous
transform from the tool frame:

Ti =

[
Ri x⃗i

0 1

]
Equation 10 is written in the member’s local coordinate
system. However, the forces applied to the tool are known
in the tool coordinates. Hence, we must convert Equation 10
to the tool frame. Define

R̃j =

[
Rj 0
0 Rj

]
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The stiffness matrix of each suspension element in the tool
frame is then

Kj = R̃jKR̃⊤
j (11)

where K is the same for every member.
Let us additionally examine Equation 2. Suspension member

j experiences translational deflection due to the rotation at the
tool-tip and the offset of the member from the tool-tip. Thus,

δ⃗j =

[
δ⃗t + (R(δ⃗θ)x⃗j − x⃗j)

δ⃗θ

]
(12)

Where R(δ⃗θ) = e[δ⃗θ]× is the rotation matrix representation
of the rotational deflection. However, the rotations δ⃗θ are
very small, so we can take the first two terms of the Taylor
expansion for R(δ⃗t) = e[δ⃗θ]× :

Rt(δ⃗t) ≈ I3 + [δ⃗θ]×

Substituting this into Equation 12, we arrive at Equation
2. Now we can write Equation 4 concretely in the tool’s
coordinate system, to be solved numerically:

WWW =

m∑
j=1

[
I3 03

[x⃗j ]× I3

]
R̃jKR̃⊤

j

[
δ⃗t + [δ⃗θ]×x⃗j

δ⃗θ

]
(13)

Note, using Equation 2 causes the simulation to run approxi-
mately four times faster than when using Equation 12.

VII. APPENDIX II

A. Simulated Annealing

One possible search algorithm for the optimization is simu-
lated annealing. This uses a “temperature” parameter, T , which
describes the randomness of the search and gradually “cools”,
or decreases in randomness, according to some temperature
schedule as the search progresses, in analogy to annealing used
in metallurgy. The optimization is described in Algorithm 2.

Algorithm 2 Simulated Annealing Optimization
Randomly initialize the set of sensor positions and orienta-
tions, S ∈ D
Choose the desired number of epochs, Q
Choose the desired search radius, σ
Define w(S) from Equation 8
T ← logspace(2,−4, Q)
for t ∈ T do

Perform the simulation to find w(S)
Choose nearby sensor positions, S′ ∼ N (S, σ), S′ ∈ D
Perform the simulation to find w(S′)
if w(S′) < w(S) then

S ← S′

else
Sample p from Unif[0, 1]
if exp(−(w(S′)− w(S))/t) ≥ p then

S ← S′

end if
end if

end for

The temperature schedule used in Algorithm 2 is an ex-
ponential cooling from 102 to 10−4 in Q steps, using the
MATLAB logspace syntax. Different cooling schedules can
be explored, and would tend to give slightly different results.

This method is an improvement on a brute force search of
the entire space because as the temperature cools, it converges
on the optimum and becomes a more greedy search. However,
the stochastic nature greatly outperforms a simple greedy
search by ensuring the solution space is well explored and
the algorithm probably does not stop in a local optimum.
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