
1

Robust Object Pose Tracking for Augmented
Reality Guidance and Teleoperation

David Black, Septimiu Salcudean

Abstract—For many augmented reality guidance, teleopera-
tion, or human-robot interaction systems, accurate, fast, and
robust 6 degree of freedom object pose tracking is essential.
However, current solutions easily lose tracking when line-of-sight
to markers is lost. In this paper we present a tracking system
which matches or improves on current methods in speed and
accuracy, achieving 1.77 mm and 1.51 degrees accuracy at 22
Hz. Reflective markers are segmented in infrared images using
contour detection before using the known marker geometry to
perform point correspondence and pose computation using novel
approaches. At the same time, a new square-root unscented
Kalman filter is introduced which improves accuracy and flexibil-
ity by tracking the markers themselves rather than the computed
pose, and enables fusion of an external inertial measurement unit.
This reduces noise and makes the tracking robust to brief loss
of line-of-sight. The algorithms and methods are described in
detail with pseudo-code for ease of reproduction. The system is
implemented in simulation and on a Microsoft HoloLens 2 using
Unity for ease of entry and integration into graphical projects.
The code is made available open source. Tests of the system are
described, and the results analyzed.

Index Terms—Augmented Reality, Tracking, Computer Vision,
Kalman filter, Teleoperation, Human Computer Interaction

I. INTRODUCTION

Mixed reality (MR) headsets are being used increasingly
for guidance of manual tasks. This includes MR guidance
of device assembly [1], maintenance and inspection [2], [3],
physiotherapy and rehabilitation [4]–[6], needle biopsies and
interventions [7], [8], surgical guidance [9], and even sports
instruction [10], [11]. Direct “human teleoperation” of people
through a tightly coupled hand-over-hand guidance system is
also being developed [12], [13]. By fusing virtual content with
the real environment, MR enables seamless instruction and
guidance while completing tasks, and allows users to “see
inside” patients by overlaying medical images.

In most of these cases, the user of the interface manipulates
a tool or device with their hand. For example, in human
teleoperation for tele-ultrasound, a novice user moves an
ultrasound probe with hand-over-hand guidance from a remote
expert. To provide feedback in any of these systems, whether
visual feedback for the user to aid real-time correction of
motions, recording of performance for later evaluation, or even
pose feedback to a remote expert in teleoperation systems, it is
essential to track the pose of the tool. Additionally, sensors on
the tool often require pose information. In orthopedic surgery,
the tools are commonly used to mark locations for drilling or
cutting, where accuracy is key [14], [15]. For instrumentation
with force sensors, the tool orientation is necessary to trans-
form measured forces and torques to the world frame [16].

Pose information can also be used in 3D ultrasound, to stitch
several 2D ultrasound images from different planes into a 3D
volume [17].

For teleoperation in particular, fast, accurate, and robust
pose tracking is essential. To provide force feedback in a
mixed reality teleoperation system, a 2-channel force-position
architecture could be used [18]–[20] where the expert com-
mands a pose, which is matched by the novice, resulting in an
applied force on the patient. The force is measured and sent to
the expert, where it is applied back to the expert through a hap-
tic device [21]. In this case, force and thus also pose sensing
is required on the user’s tool. However, this architecture has
problems if there are time delays [22]. To address this issue,
more sophisticated four-channel architectures are also used,
in which force, velocity, or wave variables are communicated
bilaterally [23]–[26]. In all of these cases, pose tracking is
required to transform the forces and directly to feed back
the poses. To maintain stability and transparency, the tracking
must be robust - i.e. rarely losing track of the object pose -
and accurate.

To this end, different approaches are possible. Common
methods involve external optical trackers from vendors includ-
ing NDI (Waterloo, Ontario) and Atracsys (Puidoux, Switzer-
land). These are fast and accurate but require line of sight,
which is easily lost in tasks requiring larger rotations, such
as ultrasound. Alternatively, electromagnetic tracking systems
are also available, for example the NDI Aurora. However,
these suffer from drift in the presence of ferromagnetic ma-
terials in the workspace. Kalman filtering techniques have
been employed to improve the performance of these devices,
including for optical [27] and electromagnetic tracking [28]–
[30]. In this context, many different types of Kalman filters
have been described. Extended Kalman filters (EKFs) have
been used to fuse optical and inertial pose measurements
[31], but unscented Kalman filters (UKFs) are known to be
more accurate as they do not linearize the dynamics, and they
have equal computational complexity [32], [33]. For passive
target tracking, comparative studies have showed improved
performance using a UKF over an EKF [34], [35]. Further
developments have also been described, including iterative
UKFs [36] which boast improved convergence, robustness,
and tracking accuracy. Square-root UKFs address the issue
of numerical instability by guaranteeing positive definiteness
of the covariance matrix in every time step [32]. Enayati et
al. present an excellent review of object tracking systems with
various filters, and themselves implement a UKF for fusion of
optical and inertial information for object pose tracking [37].

These methods, however, use the output pose of a commer-

2

cial optical sensor. This requires external hardware in addition
to the MR headset which is often not desirable. Object pose
tracking using the HoloLens 2 (Microsoft, Redmond, Wash-
ington) has thus recently been explored. Many groups have
used fiducial marker tracking like ArUco markers [38]–[40],
but these are not sufficiently accurate [41]. Kunz et al used the
infrared (IR) reflectivity and time of flight (ToF) depth sensors
of the original HoloLens to track individual infrared markers
with an accuracy of 0.76 mm and update rate of 22-30 Hz
[42]. The accuracy of the actual 6 degree of freedom (6-DOF)
pose calculated from the individual markers is not reported
and it uses 8 IR markers which is not practical for most
hand-held applications. The method includes no provision for
occlusion of markers or temporary loss of tracking. Gsaxner
et al. achieved tracking accuracy in non-static scenarios of 1.9
mm and 1.18◦ at rates of 20-30 Hz using the HoloLens 2 stereo
cameras and a single-constraint-at-a-time Extended Kalman
Filter [41]. Their approach does not use the IR cameras and
relies instead on placing an extra light source on the HoloLens.
Loss of tracking due to occlusion of one or more markers is
not considered.

Iqbal et al. again used the IR cameras to track spherical
markers, co-registered with an external optical tracker, with
an accuracy of 2.03 mm and 1.12◦ [43]. The measurement
rate is not reported. Furthermore, the HoloLens system is not
robust to marker occlusion, though the external tracker can
compensate if it sees the markers. Finally, Martin-Gomez et
al. described a similar approach and present a very thorough
analysis of the stability and accuracy [44]. Their implementa-
tion includes the ability to define tool geometries on the fly
and track multiple tools. The approach achieves accuracies of
0.09-0.42 mm and 0.80◦ on limited, single-axis motions, and
a measurement rate of 172.37 Hz when run offline. In practice,
the sensor rate is up to 45 Hz, which limits the measurements.
The tracking algorithm is run externally on a very powerful
PC, not on the HoloLens 2 itself, which can be advantageous in
operating rooms, but is often not practical for remote guidance
or teleoperation scenarios. Some of the presented approaches
to marker recognition and point matching would thus be
difficult with the limited computational power of a HoloLens
2. Robust tracking through IMUs or other approaches is not
presented.

To our knowledge, no paper has combined the most modern
Kalman filtering approaches with the practical utility of the
MR headset-based tracking, nor addressed the concern of
marker occlusion in HoloLens-based tracking. Furthermore,
the filtering approaches described above use the output pose
from a commercial pose sensor while in the HoloLens 2 only
the individual marker locations are available. Before com-
puting the pose, point correspondences must be determined,
and phantom points caused by noise or missing points caused
by occlusion must be handled. While point correspondence
algorithms are explored in stereo matching [45], [46], these
rely on having relatively unique descriptors such as SIFT
[47], and large numbers of points for approaches such as
RANSAC [48], [49]. Point cloud registration similarly uses
large numbers of points for various statistical methods [48],
[50]–[52]. However, we have few points and all are identical,

so these approaches are not applicable. A method based on the
comparison of inter-point distances among the measured points
and among the known geometry is mentioned but not described
in [43], [53]. Gsaxner et al. describe a similar approach using
minimum-weight matching [41]. No fall-back is presented in
these cases, in case the initial approach fails.

We therefore set out to develop a HoloLens 2-based 6-DOF
pose tracking system that is more robust to marker occlusion,
matches previously reported accuracies, and is independent of
external hardware. To achieve this, we use the IR cameras
of the HoloLens 2 and describe in detail an algorithm for
more robust point correspondence. This is also based on inter-
point Euclidean distance comparison, but uses a novel voting-
based method that is robust to noise and can assign just the
subset of points that is confidently known, unlike optimization-
based approaches [41]. Several subsequent steps and back-
up methods are presented which can fill in the remaining
points and find matches even if the initial attempt failed. A
square-root UKF is used for pose estimation and optionally
to fuse data from an inertial measurement unit (IMU) which
may be installed on the tracked tool. In many cases, such
as in point-of-care ultrasound (POCUS) probes or devices
instrumented with force sensors, IMUs are already included
so no additional hardware is required. This gives the tracking
system robustness. Furthermore, the described SR-UKF model
is to our knowledge novel for this application as it tracks not
the pose directly, but rather the individual marker positions.
In this way, it is more suited to systems like the HoloLens
2 where the marker positions are the input instead of the
pose itself. The pose that is subsequently computed from these
measurements is guaranteed to satisfy the constraint that the
markers form a rigid body. In the case of occluded markers,
the measurement update step can make use of a subset of
the markers rather than losing the whole measurement frame
because no pose could be computed directly. This is only
possible if point correspondences exist.

In the following sections, the measurement system is
described from hardware and sensor acquisition to pre-
processing, and finally the basics of the SR-UKF are explained
and applied to our system. Mathematical details are expanded
upon in the Appendix. In Sections II-F and III respectively,
tests are described to evaluate the system, and the results
are presented. Finally, simulation code and the HoloLens 2
implementation are available in Section VI.

II. METHODS

A. Pose Tracking Pipeline

The overall processing pipeline for HoloLens 2-based pose
tracking is enumerated below. Each step and algorithm is
detailed in the following sections.

1) Determine potential marker positions with the HoloLens
2 sensors (Section II-B)

2) Remove outliers or phantom markers and find clear point
correspondences (Section II-D, Algorithm 2)

3) Find remaining point correspondences (Section II-D,
Algorithm 3)

3

Fig. 1. Flowchart of pose estimation algorithm. Most of the steps are outlined in one of the below algorithms. In our case, however, the question of reliable
previous state was always negative as the frame rate was not high enough to match to previous points with good accuracy.

4) SR-UKF measurement update (Section II-E, Algorithm
5)

5) Compute the pose from the SR-UKF state (Section II-C,
Algorithm 4)

In parallel, the SR-UKF is running and performing state
updates at a higher rate. Additionally, the IMU readings come
in at a higher rate and perform their own measurement updates.
The entire process is illustrated in Fig. 1.

Fig. 2. Hardware setup for tracking and evaluation. The relevant transforms
are shown, as is NDI Polaris Spectra optical tracker, the HoloLens 2 with IR
markers for registration with the Polaris, and the tracked tool, in this case a
dummy ultrasound probe, with IMU and IR markers. The world frame is held
stationary in the environment by the HoloLens SLAM functionality.

B. Hardware and Measurement

The only hardware required for this system is the Microsoft
HoloLens 2 and an arrangement of IR-reflective markers. For
this paper, four IR markers were arranged spatially in a rigid
body such that the distance between each pair of markers
was unique. The reason for this is explained in Section II-D.
For pose calculation, at least three markers are required, but
more may be used for better results. The rigid body was
designed in SolidWorks CAD software and 3D-printed, and
the known geometry from the CAD model was used in the
tracking algorithm. In our application of interest, we need

accurate tracking of an ultrasound transducer, so, without loss
of generality of the approach, the markers were attached to a
3D-printed dummy ultrasound probe in the shape of a Clarius
C3HD 3, as shown in Fig. 2.

The HoloLens 2 has two pairs of stereo greyscale cameras
for SLAM as well as a front-facing depth camera. The depth
camera can operate in two modes: articulated hand tracking
(AHAT - 45FPS, up to 1m from device), or long-throw (1-5
FPS, for spatial mapping). Due to its better rate and accuracy,
AHAT mode was used. The depth camera returns a ToF
depth image and an IR reflectivity image, both of which can
be accessed via the HoloLens 2 Research Mode APIs [54].
Custom extrinsic parameters were computed separately after
finding that the ones in the API were inaccurate for our device.

For testing of the IMU fusion, a custom printed circuit board
for an ultrasound probe force sensor [16] with built-in IMU
was placed on the dummy probe. The gyroscope readings were
communicated to a desktop PC via a UART to USB converter,
and sent to the HoloLens over a WebSocket connection with
minimal delay (< 10 ms) at approximately 60 Hz (the frame-
rate of the Unity application on the HoloLens 2).

The primary steps of the marker recognition and 3D position
extraction are shown in Fig. 3. Binary thresholding followed
by contour detection is used to find the markers. The detected
contours are filtered for circularity by determining the contour
area, a, and circumference, c, and computing k = 4πa/c2.
A k value close to 1 is a perfect circle, and a threshold is
set to remove non-circular contours. The marker locations in
the image plane are determined as the centroids of the closed
contours. The depth values are then obtained by querying those
coordinates in the depth image. Using the camera intrinsic
parameters and the depth values, the image plane coordinates
are transformed to 3D points, and finally to world-frame
coordinates through the extrinsic parameters and HoloLens 2
SLAM capabilities. The method was found to be very robust,
though occasional “phantom” markers are also measured, due

4

Fig. 3. Computer vision process, showing IR reflectivity and ToF depth
images, and the steps for extraction of 3D point locations in the world frame
from the two images. The contour detection is carried out using OpenCV on
the reflectivity image, before the depth values from those [u, v] coordinates
are extracted from the depth image.

to reflection from random items in the environment. These
phantom markers are later removed in the pre-processing.
In the next sections, the following notation is used.

a = Scalar
aaa = Column vector
A = Matrix
ak = a at time step k

C. Pose Computation

To calculate the tool’s pose from the measured points,
{rrri, i ∈ [1, n]}, we solve the constrained orthogonal Procrustes
problem using the Kabsch-Umeyama algorithm [55], shown
in Algorithm 4 in the Appendix. This is computationally
efficient and guarantees that the output is a rotation matrix. It
relies on knowing the geometry of the tracked points a priori,
and calculates the least squares solution which best maps the
measured points to the known ones. To do this, however, we
must first find point correspondences, as described below.

D. Pre-processing and Point Correspondence

In order to calculate 6-DOF pose from the marker locations,
we find the homogeneous transform that most closely aligns
the known rigid geometry with the measured marker positions.
However, to do so, we must first know which known point
corresponds to which measured point. This process is called
finding point correspondences and is non-trivial as it is not
possible to differentiate between the spherical IR markers.
Additionally, there may be points missing, if a marker is
occluded, or there may be extra phantom points as explained
above, or likely some combination of the two. Therefore,

the first step is to remove phantom points and perform point
correspondence.

There are several options for outlier point removal:
• Random sample concensus (RANSAC) [56]; This relies

on a relatively large number of points to make the random
sampling effective. However, in our case there may not
be many more inliers than outliers (we have about 2-4
inliers and usually 0-2 outliers). Also, this does not take
advantage of our knowledge of rigid body geometry.

• Brute Force: try every permutation of the measured
points, calculate the pose, determine the error, and choose
the permutation with the minimum error. This is slow and
does not take advantage of any prior knowledge we may
have of the the last state of the markers, from which they
presumably have not moved much if the measurement
rate is sufficiently high.

• Closest Last Point: Compare the current measured points
to the previous state, and keep the closest matches. This
assumes the motion is slow relative to the measurement
rate. Points that are further away than threshold from the
previous points can be marked as outliers.

• Euclidean Distance Comparison: Calculate the distances
between all the measured points, and compare them to
the distances between the known points. This relies on
designing the geometry so each inter-point distance is
unique. This is shown in Algorithm 2.

Closest Previous Point Matching
The naı̈ve closest previous point method operates on the
assumption that since the last accurate state update, the object
has undergone a small enough motion that a given point is
still closer to its own previous position than to the previous
position of any of the other points. If this is not true, this
algorithm easily assigns the same index to more than one
measured point. We can make the algorithm more robust by
following an optimization-based approach. We first assume
that all outlier points have been removed (see Algorithm
4 for example), and the measured points are placed in the
columns of a matrix X ∈ R3×k. Let Y ∈ R3×k be a
matrix whose columns are the previously measured points. To
determine point correspondences, we can solve the following
optimization problem:

Py = argmin
Py

{∥X − Y Py∥2F } (1)

s.t. Py is a permutation matrix, (2)

where ∥∥F is the Frobenius norm. Solving this optimization
problem analytically using the Frobenius inner product (See
Appendix), we arrive at Algorithm 1.

Though effective in simulation, this method is unfortunately
ineffective in practice in our system as the depth sensor frame
rate is sometimes not sufficiently fast relative to the tool
motions, so the current and previous pose do not correspond
closely. It could, however, be effective with faster hardware.

Euclidean Distance Matching
Closest-previous-point methods were found to be relatively in-
effective with the HoloLens 2. Sometimes, also, the algorithm

5

Algorithm 1 Frobenius norm-based Point Correspondence
Generate a list of all permutations of {1, 2, . . . , k} (do this
offline beforehand)
Given the set of measured points, {rrri}, and previous points,
{yyyi} for i ∈ [1, n]
X ←

[
rrr1 rrr2 . . . rrrk

]
, and Y ←

[
yyy1 yyy2 . . . yyyk

]
Z ← X⊤Y
for each permutation ppp =

[
i1 i2 . . . ik

]
do

e←
∑k

j=1 Z[j, ij]
if e is biggest so far then

Keep permutation ppp
end if

end for
The point correspondence is the best permutation

may lose track of the points completely, and upon startup of
the application, the algorithm has no previous pose to fall back
on. For these cases, we need a robust method that does not rely
on a priori knowledge. Algorithm 2 presents a very effective
Euclidean distance voting-based method of removing outliers
which runs in O(n2m2) time. Considering that there are four
points and the inter-point distance matrices are symmetric, this
is only around 128 computations.

The Euclidean method is likely similar to what is
mentioned in references [41], [43], [53]. As noted in the
Introduction, however, Algorithm 2 is based on voting which
adds robustness. Even if, by a highly unlikely coincidence, a
phantom point and a measured point have the same distance
as a pair of known points, that constitutes only one vote for
the phantom point, and it is still unlikely to be included. In
practice the phantom points are generally far away and this
method works well. Additionally, it has the ability to remove
outliers reliably, and assign only the correspondences that
are clear. Rather than forcing questionable correspondences
through an optimization-based assignment, these can be
considered separately after further processing. For example,
brute force methods to identify the remaining two or three
points become very simple and low-cost.

Brute Force Matching
After much experimentation with slicker solutions, we
determined that the brute force method is best in this case,
as shown in Algorithm 3. If the noise is small enough,
it is guaranteed to find the correct solution. There are m!
combinations, and each trial involves carrying out an SVD
which is O(3m2). Since m = 2, 3, or 4, the O(m!m2)
cost is not very large. This computation is only carried out
relatively infrequently if all else fails.

These methods requires at least three points to be measured
to provide a unique match and subsequently to compute the
pose. For better numerical stability and robustness in the case
of partial occlusion, we use four markers. However, with the
unscented Kalman filter described below, it is possible to
provide measurement updates with less than three measured
markers if correspondences can be determined. This would

Algorithm 2 Euclidean Distance Voting Point Correspondence
Given the set of measured points, {rrri, i ∈ [1, n]}, and
known geometry points, {yyyi, i ∈ [1,m]}

Form a matrix of inter-point Euclidean distances (D)
for i in 1:n do

for j in (i+ 1):n do
D[j, i] = D[i, j]← ∥rrri − rrrj∥22

end for
end for

Form the same matrix (Y) for the m known points (do this
offline beforehand)

Define V ∈ Zm×n with every element equal to 0
Vote on likely matching pairs of points:
for i in 1:m do

for j in (i+ 1):m do
(k, l) = argmin

(k,l)

{|D[k, l]− Y [i, j]|}

V [i, k] += 1, V [i, l] += 1, V [j, k] += 1, V [j, l] += 1
end for

end for

for i in 1:n do
if sum(V [:, i]) < threshold then

Mark measured point i as an outlier
else

j ← argmax
ℓ
{V [ℓ, i]} and c← max{V [:, i]}

if c > threshold then
Measured point i likely corresponds with
geometry point j

else
Flag measured point i for further processing

end if
end if

end for

Algorithm 3 Brute Force Point Correspondence
Given the set of measured points, {rrri, i ∈ [1, n]}, and
known geometry points, {yyyi, i ∈ [1,m]}
Generate a list of all permutations of {1, 2, 3, . . . , n} (do
this offline beforehand)
X ←

[
rrr1 rrr2 . . . rrrn

]
, and Y ←

[
yyy1 yyy2 . . . yyym

]
for each permutation do

Rearrange the columns of Y according to the
permutation to create Y ′

R, r̄̄r̄r ← kabsch(X,Y ′) (See Algorithm 4)
e←

∑n
i=1∥r̄̄r̄r +Rℓℓℓi − rrri∥22

if e is smallest so far then
Keep permutation

end if
end for
The point correspondence is the best permutation

require the markers to be individually identifiable, for example

6

by making them active with IR LEDs. With the current
markers and point correspondence methods described above,
at least three markers are required.

E. Kalman Filter

To improve the tracking, both by reducing noise, interpo-
lating between point measurements for higher readout rates,
and for integrating external IMU data, a Kalman filter or
particle filter can be used. Due to its Monte Carlo sampling,
the particle filter is more computationally intensive, so we use
a Kalman filter. As the dynamics are nonlinear, an extended
(EKF) or unscented Kalman filter (UKF) is required. EKFs
rely on linearization of the dynamics about the operating point,
which is less accurate and requires explicit computation of a
Jacobian matrix [57], [58]. We therefore present an SR-UKF
for the pose tracking.

In order to track the object, we follow the n markers rather
than the pose of the object itself. This alleviates the issues
associated with propagating orientation. Euler angles and
similar representations have singularities, and rotation matrices
quickly lose orthonormality. Quaternions are effective, but
tracking marker positions also lets us enforce the rigid body
constraint, and give partial measurement updates, as described
in the Introduction. Thus, the marker positions, rrri, are tracked,
as are the angular and linear velocity of the object’s centroid,
ccc: ωωω and ċcc. The state vector, xxxk is then:

xxxk =
[
(rrr1k)

⊤ . . . (rrrnk)
⊤ ωωω⊤

k ċcc⊤k
]⊤ ∈ RN×1, (3)

N = 3n+ 6

The marker locations are measured using the computer vision
system. The angular velocity can also be measured using an
IMU on the object, as can the linear acceleration, and thus
through numerical integration, the linear velocity. However,
the latter tends to drift significantly, so only the angular
velocity is used. The output, yyyk, is thus simply:

yyyk =
[
(rrr1k)

⊤ . . . (rrrnk)
⊤ ωωω⊤

k

]⊤
(4)

The state and output equations are given by nonlinear, vector-
valued functions fff(xxxk) and hhh(yyyk) respectively, with additive
process and measurement noise vectors vvvk and wwwk respec-
tively:

xxxk+1 = fff(xxxk) + vvvk (5)
yyyk = hhh(xxxk) +wwwk (6)

The state’s evolution is given by:
rrrik+1 = rrrik + dt

(
ċcck + [ωωωk]×Rkℓℓℓ

i
)
+{

1
2dt

2
[
c̈cck + ([ωωωk]

2
× + [αααk]×)Rkℓℓℓ

i
]}

for i ∈ [1, n]

ωωωk+1 = ωωωk + {dtαααk}
ċcck+1 = ċcck + {dtc̈cck}

(7)

Where Rk is the rotation matrix, described below, and ℓℓℓi is
the position of the ith marker in the rigid body frame. This
state equation is derived in the Appendix and is specifically
formulated to explicitly enforce the rigid body constraint.

Rather than computing the marker positions based on indi-
vidual velocities, they are computed from the velocity of the
rigid body and the known relative transforms of the markers
from the centroid. In this way we maintain a constant rigid
geometry.

In the above expression, the terms in curly brackets are
not explicitly calculated, but rather are modeled as noise by
placing them in vvvk and assuming that the linear and rotational
acceleration are small and varying normally, as is commonly
done. i.e.:

c̈cck ∼NNN(0,Σ2
c) (8)

αααk ∼NNN(0,Σ2
α) (9)

Assuming the axes of the accelerations are independent and
identically distributed (iid), Σc = σcI3 and Σα = σαI3. In
this way, we define the state equation as:

fff(xxxk) =


rrrik+1 = rrrik + dt

(
ċcck + [ωωωk]×Rkℓℓℓ

i
)

for i ∈ [1, n]

ωωωk+1 = ωωωk

ċcck+1 = ċcck
(10)

And the process noise is:

vvvk =


1
2dt

2
[
c̈cck + ([ωωωk]

2
× + [αααk]×)Rkℓℓℓ

1
]

...
1
2dt

2
[
c̈cck + ([ωωωk]

2
× + [αααk]×)Rkℓℓℓ

n
]

dtαααk

dtc̈cck

 (11)

We assume that the measurements of the point positions are
all iid normally distributed with variance Σ2

r = σ2
rI3, as are

the gyroscope measurements from the IMU: Σ2
ω = σ2

ωI3. Then
the measurement noise vector is

wwwk =
[
(NNN(0,Σr)

1)⊤ . . . (NNN(0,Σr)
n)⊤ NNN(0,Σω)

⊤]⊤
(12)

In the above, the rotation matrix, Rk, is used though it is not
included in the state. Rather, the computation of the rotation
matrix is part of the state update, and it is recomputed every
step to avoid bad scaling. This is completed using Algorithm
4, as described in Section II-C.

From these noise vectors, covariance matrices are computed,
and the presented state update and output equations are used
to propagate the state and covariance in the UKF. Measure-
ments from the marker tracking and an IMU provide periodic
measurement updates. The details of this unscented Kalman
filter and implementation on the HoloLens 2 are given in the
Appendix.

F. Testing

To develop and test the efficacy of the Kalman filter,
two methods were used. First, the system was simulated in
MATLAB using Simulink. A series of random accelerations
and angular accelerations was applied to the known geometry
points and integrated to obtain a realistic motion. Simulated
IMU and marker position measurements were extracted from
these signals and zero-mean Gaussian noise was added to

7

match the real system. Phantom points were added with prob-
ability Pp to each measurement, and markers were removed
(“occluded”) with probability Po. The algorithms were applied
to the simulated data, sampling the IMU signal at 2 to 3 times
the rate of the point measurements, with probability P2 and
P3 = 1 − P2, respectively. This reflects the difference in
the computer vision frame rate and IMU measurement rate
experienced in our real system.

The second test method was using the actual hardware
(Fig. 2). A Microsoft HoloLens 2 running a Unity applica-
tion performed all the tracking and processing, obtaining the
homogeneous transforms Tht in Fig. 2, while an external NDI
Polaris Spectra optical tracker was used for the ground truth
(Tpt). An ultrasound probe-shaped dummy with 3D-printed
structure holding four IR reflective markers was held within
view of both the HoloLens and the Polaris. Further, a structure
with four IR markers was placed on the front of the HoloLens,
where it faced the Polaris device, to compute the registration
to the Polaris (Tpm). The transform from HoloLens frame
to world frame (Twh) is enabled by the HoloLens spatial
mapping and localization. To compare the measurements,
Tht, and ground truth, Tpt, it is necessary to compute the
transform from the HoloLens frame to the markers placed on
the HoloLens, indicated as Tmh. Using the relation Tht =
TptT

−1
pmT−1

mh, where Tht, Tpm, and Tpt are measured, Tmh

was determined using least squares using a measurement of
5000 pose samples. This matrix was subsequently used for all
tests.

With the systems thus set up to be as similar as possible,
the algorithms were designed in simulation and adjusted and
tested on the physical setup. It was found that both systems
had nearly identical responses. However, all results shown
below are data recorded from the physical system. All data
was recorded with timestamps to allow alignment and direct
comparison between the HoloLens and Polaris. After aligning
the start of the data, it was re-sampled so the HoloLens and
NDI measurements aligned in every sample. The error between
the two was computed by taking the root-mean-square (RMS)
of the element-wise difference between the two signals.

To compute lag between the signals, the Polaris data was
read in programmatically while the same program periodically
exchanged timestamps over a WebSocket connection with the
HoloLens, as described previously [59]. This enabled clock
synchronization between the HoloLens and the PC connected
to the Polaris. The lag of the HoloLens measurements could
then be computed by finding the time delay that maximized
the normalized cross correlation between the synchronized
HoloLens and Polaris signals.

III. RESULTS

Without Kalman Filter
First the pose tracking system was tested alone, without a
Kalman filter. Compared to the NDI optical tracker, the mean
positional RMS error was 3.01 mm and the mean RMS Euler
angle representation of the rotation error was 1.75◦. Both
position and rotation have a mean error of 0.00 mm in all
axes. The position and quaternion tracking is shown in Fig. 4.

Fig. 4. Tracking without Kalman filter: Upper plot shows position (x, y,
z) and lower plot shows rotation (quaternion w, x, y, z) with very close
correspondence.

Fig. 5. Tracking with UKF: Upper plot shows position (x, y, z) and lower
plot shows rotation (quaternion w, x, y, z) with very close correspondence.

Kalman Filter without IMU
The Kalman filter was then tested in isolation, without receiv-
ing IMU data. A series of random translations and rotations
was applied by hand, tracked, and recorded as explained above.
Compared to the NDI optical tracker, the HoloLens tracking
achieved a positional RMS error of 1.77 mm. The RMS
angular error using the Euler representation of the quaternions
was 1.51◦. Both position and rotation have mean error of 0.00
mm in all axes. The position and quaternion tracking is shown
in Fig. 5.

8

Fig. 6. Noise characteristics of Kalman filter. (Left) Zoomed in signal showing noise rejection characteristics of Kalman filter. xnf is the x position without
filter, and xukf is with the unscented Kalman filter. (Middle) Discrete Fourier transform of filtered and unfiltered signals, showing decreased amplitude in
higher frequencies (noise). (Right) Gain between filtered and unfiltered signals, showing low-pass characteristics.

This reflects a lower variance in the error distribution
than without the filtering, both centred about zero. From
observation, it was clearly more noisy without the Kalman
filter, though also much less lag was present. The Kalman filter
allows us to interpolate between successive measurements us-
ing the dynamic model, so we can have a higher measurement
rate which is important for teleoperation, but the smoothing
introduces lag. The lag values are measured and discussed
later. We can change the smoothing by tuning the σ values,
with a trade-off between noise and lag. The noise rejection
characteristics of the filter are shown in Fig. 6, from a zoomed-
in portion of signal in Fig. 5.

Beyond accuracy, a key aspect of the tracking system is
robustness to motion of the object. It should maintain tracking
even if the object is rotated or translated substantially or the
markers are partially or briefly occluded. To test this, a series
of large motions and many full 360◦ rotations in all axes was
carried out, with markers periodically occluded briefly. The
measured poses are plotted in Fig. 7. During the test, the vision
system successfully found the correct pose in 98.63% of the
10000 measured frames. The test was repeated with one of the
markers removed, and the correct pose was found in 96.04%
of the 10000 measured frames. These results indicate that the
tracking is very robust to occlusion during any motion, even
without IMU fusion.

Fig. 7. Large motions and especially rotations used while obtaining 98.63%
successful calculation of pose.

Kalman Filter with IMU
As seen from the results so far, no gyroscope is needed during
normal operation. The vision-based tracking with Kalman filter

Fig. 8. Orientation tracking with and without IMU. Though the tracking is
not noticeably better with IMU, it allows approximate orientation tracking
to continue when the markers are occluded. This is seen between 3 and 5
seconds, when the markers were purposely occluded.

works well enough on its own. Even occlusions bad enough to
make the vision-based system lose tracking are very rare and
usually only lead to a few dropped frames at most. However,
in case the operator has to hold the probe in a position that
results in such an occlusion for an extended period of time,
having a gyroscope can add robustness as it will continue
to track. Furthermore, the IMU sampling rate can be higher
than the computer vision system, allowing for more frequent
measurement updates. This is the case in our system, which
has two to three IMU readings during each computer vision
frame.

From tests it was found that typical hand motion during
tracking was slow enough that the sampling rate of the vision
system was sufficient. Indeed, the human hand bandwidth for
applying forces is approximately 7 Hz [60], and the vision
system runs at 22 Hz (see below). The vision system is
thus beyond the Nyquist rate for hand motions. As a result,
adding IMU data at a higher rate does not noticeably improve

9

Fig. 9. UKF lag between the UKF signal (xukf , yukf , zukf) and the
unfiltered signal (x,y,z). The full signal (left), and a zoomed in section
(right) are shown. The average lag is 199.50 ± 4.65 ms with the chosen
UKF parameters.

tracking accuracy or speed. On the other hand, when the
markers are occluded manually for an extended time, the IMU
fusion drastically improves tracking of orientation during the
occlusion. This is illustrated in Fig. 8.

Time Complexity and Lag
Each image and subsequent point measurement undergoes
substantial processing before a pose can be estimated. The
average time taken for the major steps of this process are
outlined in Table I. In total, poses are captured from the CV
system every 45.98 ± 7.67 ms, or at 21.75 ± 3.11 Hz. As
explained above, this is well above the maximum bandwidth
for hand forces. At the chosen uncertainty values, σ, the lag
between the UKF and the no-filter tracking was 199.50±4.65
ms. This is shown in Fig. 9. The lag of the no-filter tracking
was determined by moving the probe along a track in a
pre-programmed manner, so its position was known at all
times. Exchanging timestamps over a WebSocket server to
synchronize the clocks, the lag of the filter-less tracking with
respect to the object’s motion was found to be 25.36 ± 6.51
ms. In total, then, the UKF lags object motion by between
25.36± 6.51 ms (with no smoothing) and 224.86± 11.16 ms
(with the smoothing presented in this paper), or more with
more smoothing. The exact value depends on the priorities of
the application.

TABLE I
TIMING OF KEY SUBROUTINES, NOT IN CHRONOLOGICAL OR

HIERARCHICAL ORDER. THE PRE-PROCESSING ROW INCLUDES THE
ENTIRE PRE-PROCESSING PIPELINE BETWEEN THE COMPUTER VISION
STEP AND FEEDING THE POINTS TO THE KALMAN FILTER, INCLUDING

GEOMETRIC TRANSFORMS, OUTLIER REMOVAL, AND POINT
CORRESPONDENCE. THE VARIATION IS DUE TO THE INFREQUENT USE OF

BRUTE FORCE MATCHING, WHICH TAKES LONGER. BRUTE FORCE
MATCHING IN ITSELF VARIES IN SPEED DEPENDING ON HOW MANY

MARKERS ARE BEING MATCHED.

Subroutine Average Time (ms)
Pre-processing 0.104± 0.293

Euclidean Matching 0.018± 0.005
Brute Force Matching 0.305± 0.270

Kabsch Algorithm 0.055± 0.005
UKF Measurement Update 2.231± 0.623

UKF State Update 8.856± 1.974
Contour detection 12.765± 5.545

Fig. 10. MR Capture from HoloLens 2 of the dummy ultrasound probe
with IR markers showing successful pose tracking. The green spheres are the
measured marker positions while the blue ones are the output of the UKF,
and the blue virtual probe shows the resultant calculated pose. This preview
can be disabled during actual operation.

IV. DISCUSSION

In this paper we have introduced an IR marker-based 6-
DOF pose tracking system for the HoloLens 2. The system
includes new, efficient point correspondence methods and a
novel SR-UKF with IMU fusion which together give accurate,
fast, robust tracking. The pose tracking is shown in Fig. 10.
The primary results are compared to previous work in Table II.

For the simulated and physical systems, all the exact same
algorithms and parameters were used, written once in MAT-
LAB and once in C#. Implemented in C#, however, we found
that some of the methods could be numerically unstable. Even
when the MATLAB implementation produced a reasonable
output given the same inputs, C# sometimes gave NaN or Inf
values in the Cholesky update steps. To handle these cases,
the failed Cholesky update was simply ignored, and the value
from before the update was used. We found that this did not
affect the performance of the filter. In 25000 up/downdate
computations, it failed 16 times (0.06%).

The approach of tracking points also allows for more intel-
ligent measurement updates in the case of multiple occluded
markers. If the markers were individually identifiable, for
example by comparing their positions between frames with
a higher frame rate, or by using different colors or different
frequency active markers, etc., the measurement update step
could still be performed with just one or two markers visible,
thus giving strong constraints on the probe position and
orientation. Unfortunately, with the current markers and point
correspondence methods, at least three markers are required.

The IMU fusion can maintain approximate orientation
tracking during extended occlusion of two or more markers.
However, it cannot improve position tracking without using
accelerometer data. This is notoriously inaccurate for position
tracking due to the two integrations required. However, in
some respects orientation tracking is most important. For
sensors such as force sensors on the tracked device, only the
orientation is needed to convert the forces to a base coordinate
system.

Future work will include improving the measurement rate
of the system. Currently, the HoloLens application is imple-
mented on Unity, which runs at only 60 Hz, thus imposing a
hard limit on the tracking speed and adding a large overhead.

10

TABLE II
COMPARISON OF PERFORMANCE BETWEEN HOLOLENS-BASED OBJECT TRACKING SYSTEMS. OUR SYSTEM HAS SIMILAR ACCURACY, HIGHER SPEED,

BETTER ROBUSTNESS, AND DOES NOT REQUIRE MODIFYING THE HOLOLENS.

Paper Pose Accuracy Speed (Hz) Robust Hardware
Kunz et al. [42] Not reported 22-30 Hz No HoloLens 1

Gsaxner et al. [41] 1.9mm, 1.18◦ 20-30 Hz No HoloLens 2 + IR LEDs
Iqbal et al. [43] 2.0mm, 1.12◦ Not Reported With external optical tracker HoloLens 2

This paper 1.8mm, 1.51◦ 22-75 Hz With IMU HoloLens 2

Speed could be improved by writing the whole application in
C++. Another limitation of the HoloLens application is that
the Research Mode APIs are only compatible with an ARM64
processor, while some useful libraries for MR applications,
such as WebRTC for efficient communication, are only avail-
able for 32-bit ARM processors. This discrepancy should be
rectified if possible.

An alternative method for the computer vision step is simple
blob detection, with filtering for convexity, area, circularity,
and brightness of the blobs with various thresholds. This was
equally effective as contour detection, but took 50−80 ms for
the detection step while contour detection took 5−13 ms. Pre-
vious works have used blob detection [41], [43]. These works
reported update rates based on the speed of the subroutines
rather than the system as a whole. Using this approach, the
worst-case running time of one pose computation would be
contour detection + pre-processing + Euclidean matching +
brute force matching + the Kabsch algorithm, which from
Table I sums to 13.247 ms, or an update rate of 75.49 Hz.
This is of course not achieved, as the depth sensor frame rate
is only up to 45 Hz, and intermediate steps of extracting the
camera pixels, etc. add to the latency.

The accuracy of the results, and especially the computed
rotations, could likely be improved by utilizing a better marker
geometry. Optimization-based methods for generating the ge-
ometry exist [61] and may improve the results. Furthermore,
the cameras are unsynchronized, and the NDI Polaris Spectra
“ground truth” that we used also has an error of approximately
1 mm and 1◦.

V. CONCLUSION

In this paper we have presented a 6-DOF object pose
tracking algorithm and implementation using IR markers and
sensors that achieves accuracies of 1.77 mm and 1.51◦, and
a practical measurement rate of 21.75 Hz. The theoretically
achievable rate is 75.49 Hz with faster camera hardware,
and specific means to improve the accuracy are outlined for
future work. The algorithm is resistant to loss of tracking,
with 98.63% success rate in calculating pose from measure-
ments taken during large motions. In the event of extended
loss of visual tracking, IMU fusion is included with an
unscented Kalman filter to continue tracking the orientation.
The accuracy, speed, and robustness of the method enable
mixed reality-based teleoperation and high-fidelity feedback
for remote guidance or human-robot interaction systems.

VI. SUPPLEMENTARY MATERIAL

The simulation code and HoloLens 2 implementation are
available here: github.com/dgblack/hl2ObjTracking

VII. APPENDIX

We introduce the following notation:

aaa[i] = ith element of aaa (indexing starting at 1)

[aaa]× =

 0 −aaa3 aaa2

aaa3 0 −aaa1
−aaa2 aaa1 0


A[:, i] = ith column of A, and A[i, :] = ith row of A

A+ bbb =
[
A[:, 1] + bbb A[:, 2] + bbb . . . A[:, n] + bbb

]
fff(A) =

[
fff(A[:, 1]) fff(A[:, 2]) . . . fff(A[:, n])

]
ak = a at time step k

In = n× n identity matrix
0n = n× n zero matrix

A. Pose Computation from Points:

The Kabsch-Umeyma algorithm for pose computation from
a set of points is given by Algorithm 4.

Algorithm 4 Kabsch-Umeyama Algorithm for Pose Calcula-
tion

Given a set of measured points {rrr1:n} in the world frame,
and corresponding known points {yyy1:n} in the rigid body
frame

Compute and subtract the centroids
kabsch(rrr1:n, yyy1:n):

r̄̄r̄r ← 1
n

∑n
i=1 rrr

i, and ȳ̄ȳy ← 1
n

∑n
i=1 yyy

i

P ←

(yyy1 − ȳ̄ȳy)⊤

. . .
(yyyn − ȳ̄ȳy)⊤

 ∈ Rn×3

Q←

(rrr1 − r̄̄r̄r)⊤

. . .
(rrrn − r̄̄r̄r)⊤

 ∈ Rn×3

H ← P⊤Q (Compute cross-covariance)

[U,Σ, V]← SVD(H) (Perform SVD)

d← sign(det(V U⊤)) (Coordinate system handedness)

R← V

1 0 0
0 1 0
0 0 d

U⊤ (Compute rotation matrix)

Return R, r̄̄r̄r − ȳ̄ȳy

end kabsch(rrr1:n, yyy1:n)

https://github.com/dgblack/hl2ObjTracking

11

B. Frobenius Norm-Based Matching

Recall, we first assume that all outlier points have been
removed (see Algorithm 4 for example), and the measured
points are placed in the columns of a matrix X ∈ R3×k. Let
Y ∈ R3×k be a matrix whose columns are the previously
measured points. To determine point correspondences, we can
solve the following optimization problem:

Py = argmin
Py

{∥X − Y Py∥2F } (13)

s.t. Py is a permutation matrix (14)

Where ∥∥F is the Frobenius norm. A permutation matrix is
one which rearranges the columns of matrix Y ; i.e. each row
and column has exactly one 1 and is otherwise 0. We expand
this definition to allow columns that are entirely 0, to allow
for missing measurement points in X . Note that in fact we
should be using TX − Y Py , where T represents the rotation
and translation of the points since the last measurement, but
we assume here that this transform is close to identity because
the object has moved very little since the last frame and ignore
it. Using the Frobenius inner product, we can expand Equation
13:

Py = argmin
Py

{∥X∥2F + ∥Y Py∥2F − 2⟨X,Y Py⟩F }

Assuming Y and X have the same number of columns (we
will revisit this below), Py has no columns that are all zero, so
all it does is rearrange the columns of Y . Hence, ∥Y Py∥2F =
∥Y ∥2F . This and ∥X∥2F are constants, so they do not affect the
minimization. Thus we are left with:

Py = argmax
Py

{⟨X,Y Py⟩F }

By the definition of the Frobenius norm, this simplifies further
to

Py = argmax
Py

{tr(X⊤Y Py)}

= argmax
i1,i2,...,ik


k∑

j=1

(X⊤Y)jij

 s.t. ij ̸= ik∀j, k (15)

Which is to say, we choose one element from each row of
X⊤Y such that no two choices come from the same column,
and their sum is maximized. This can be achieved in O(k!)
time, which, considering k = 3 or 4, is faster than k2 or
k3 respectively. It also makes sense as we are effectively just
maximizing the cross-covariance of X and Y Py . A simple
solution is shown in Algorithm 1. This method works if
there are no outliers, but we also assumed that X and Y
have the same dimension, k. This is not the case if X is
missing a marker. To handle this scenario, we simply perform
the presented optimization repeatedly, each time removing a
different column of Y , and keep the best result. Thus we arrive
at Algorithm 1. If the measurement rate is too slow relative
to the speed of motion, T in TX −Y Py is no longer close to
identity, so the method fails.

C. State Equation

The state equation found in Eqn. 7 is simple to derive. The
position of one of the markers is

rrrik = ccck +Rkℓℓℓ
i
k

Where ccc is the origin of the tracked object’s coordinate system
expressed in the world frame, and ℓℓℓi is the position of the
marker in the object frame. The state update is then

rrrik+1 = rrrik + dtṙrrik +
1

2
dt2r̈rrik

From these two equations we can determine the update law
by taking the derivative twice.

rrrik+1 = rrrik + dt
(
ċcck + [ωωωk]×Rkℓℓℓ

i
)
+{

1

2
dt2

[
c̈cck + ([ωωωk]

2
× + [αααk]×)Rkℓℓℓ

i
]}

for i ∈ {1, . . . , n}

D. Square-Root Unscented Kalman Filter

The state, output, and noise vectors, and the state update and
output equations are given in Section II-E. In the following, the
implementation of the SR-UKF using this model is described.
Additionally, the covariance matrices are derived from the
noise vectors.

The UKF is similar to a particle filter in that it uses sam-
pling to make an a priori estimate. However, unlike random
Monte Carlo sampling, UKFs use the unscented transform
with deterministic sampling at a few well-chosen points called
sigma points. By choosing these correctly, they maintain the
correct mean, variance, and moments of the distribution after
being transformed through the nonlinear model. In addition
to updating the state every time step, the UKF updates the
process covariance matrix, Pproc. To create the sigma points,
however, the matrix square root of Pproc is used. It is com-
putationally relatively expensive to compute the matrix square
root every iteration, and it fails if Pproc is not positive definite.
Unfortunately, this happens easily due to numerical error in
the computations. Therefore, a modified UKF algorithm called
the square root UKF (SR-UKF) is used in which the matrix
square root, Sk, of the covariance matrix is propagated rather
than the matrix itself [32]. The SR-UKF algorithm is shown
in Algorithm 5.

This makes use of a few powerful linear algebra techniques
which are described in detail in reference [32]. Briefly, the
Cholesky factorization is used for the matrix square root.
This expresses a symmetric positive definite (SPD) matrix
A as A = LL⊤, where L is upper triangular. To efficiently
compute this, we use the QR decomposition, which expresses
matrix A = QR where Q is orthogonal and R is upper
triangular. Taking just the triangular part of R gives us the
Cholesky factor, L. Since this works only for SPD matrices
and sometimes wwwc[1] < 0, we initially include only columns
2 to 2N + 1 (see Algorithm 5), and then perform a rank one
Cholesky update. This is a useful tool for efficiently computing
the Cholesky factorization of a matrix A + γxxxxxx⊤ when the
Cholesky factor of A is already known. In Algorithm 5, this
is expressed as cholupdate(A,xxx, γ). If γ is negative, this is
known as a Cholesky downdate. Both the up and downdate are

12

Algorithm 5 Square Root Unscented Kalman Filter
Set 1e− 4 < α < 1, β = 2, κ = 3−N , and λ = α2(N +
κ)−N
Initialize xxx0 using a good measurement
Initialize S0 = choleksy(Pproc)

wwwc[1]←
λ

N + λ
+ 1− α2 + β, and wwwm[1]← λ

N + λ
,

wwwc[2 : 2N + 1] = wwwm[2 : 2N + 1]← 1

2(N + λ)

Calculate 2N + 1 sigma points:
Xk−1 ←

[
xxxk−1 xxxk−1 +

√
N + λSk xxxk−1 −

√
N + λSk]

]
State Update:
Xk|k−1 ← fff(Xk−1)
xxx−
k ← Xk|k−1wwwm

S−
k ← qr

{[√
wwwc[2]Xk|k−1[:, 2 : 2N + 1]

√
Pproc

]}
S−
k ← cholupdate(S−

k , Xk|k−1[:, 1]− xxx−
k ,wwwc[1])

Yk|k−1 ← hhh(Xk|k−1)
yyy−k ← Yk|k−1wwwm

Measurement Update:
S−
y ← qr

{[√
wwwc[2]Yk|k−1[:, 2 : 2N + 1]

√
Pmes

]}
Sy ← cholupdate(Sy, Yk|k−1[:, 1]− yyy−k ,wwwc[1])
Find cross-covariance
Pxy ←

∑2N+1
i=1 wwwc[i](Xk|k−1[:, i]−xxx−

k)(Yk|k−1[:, i]−yyy−k)⊤
Compute Kalman gain
Kk ← (Pxy/S

⊤
y)/Sy

Update state and covariance
xxxk ← xxx−

k +Kk(yyy
mes
k − yyy−k)

Sk ← cholupdate(S−
k ,KkSy,−1)

built-in functions in MATLAB, and algorithms for computing
them are described in [62]–[65]. In C# we implemented these
functions using Alglib.

Finally, to compute the Kalman gain, since Sy is an upper
triangular Cholesky factor, we can use efficient backsubstitu-
tion twice rather than matrix inversion. Specifically, Pxy =
(KkSy)S

⊤
y , so we can solve for (KkSy) using backsubstition

once on S⊤
y , then solve for Kk by applying backsubstitution

on Sy to the result.
The measurement update step is very flexible in that it

is possible to update just the parts of the state that were
measured in a given sample. In particular, the IMU and image-
based marker data arrive at very different rates, so there can
be frequent updates of IMU data and less frequent marker
position updates. When marker updates do arrive, these may
not include all the markers. To support this flexibility, we
temporarily set the uncertainty (σ) associated with the missing
data to a very large number before computing Sy and Kk. In
this way, those values are effectively ignored.

Parameters α, β, and κ are chosen based on the application.
A value of β = 2 is optimal for Gaussian distributions, and
κ is usually set to 3 − N , where N is the dimension of the
state.

The other important parameters to tune the performance of

the Kalman filter include the variances of the process and
measurement noise, from Equations 8, 9, and 12. The resulting
covariance matrices are used in the state and measurement
update steps of Algorithm 5. The measurement covariance is
given in Equation 16.

Pmes =

[
σ2
rIn 0
0 σ2

ωI3

]
(16)

On the other hand, the process covariance is given by Equation
17.

Pproc = E
{
vvvkvvv

⊤
k

}
=

Err Erα Erc

E⊤
rα dt2σ2

αI3 Ecα

E⊤
rc E⊤

cα dt2σ2
cI3

 ∈ R(3n+6)×(3n+6)

(17)

Where, for i, j ∈ [1, n],

Eji
rr =

1

4
dt4E

{
r̈rrjk(r̈rr

i
k)

⊤
}

(18)

Ei
rα =

1

2
dt3E

{
αααk(r̈rr

i
k)

⊤} (19)

Ei
rc =

1

2
dt3E

{
c̈cck(r̈rr

i
k)

⊤} (20)

where r̈rrik =
[
c̈cck + ([ωωωk]

2
× + [αααk]×)Rkℓℓℓ

i
]

Ecα = dt2E
{
c̈cckααα

⊤
k

}
(21)

Since both random variables, c̈cck and αααk, are iid and zero mean,
we can eliminate any degree 1 or cross terms.

Ei
rα =

1

2
dt3E

{
αααk

(
ℓℓℓi
)⊤

R⊤
k [αααk]

⊤
×

}
(22)

Ei
rc =

1

2
dt3E

{
c̈cckc̈cc

⊤
k

}
=

1

2
dt3σ2

cI3 (23)

Erc =

E
1
rc
...

En
rc

 ∈ R3n×3 (24)

Ecα = 03 (25)

If we let the rows of Rk be vectors RRR⊤
1 , RRR⊤

2 , and RRR⊤
3 , then

Equation 22 can be written as

Ei
rα =

1

2
dt3E

αααk

αy
kRRR

⊤
3 ℓℓℓ

i − αz
kRRR

⊤
2 ℓℓℓ

i

αz
kRRR

⊤
1 ℓℓℓ

i − αx
kRRR

⊤
3 ℓℓℓ

i

αx
kRRR

⊤
2 ℓℓℓ

i − αy
kRRR

⊤
1 ℓℓℓ

i

⊤


Since αx, αy, αz are iid:

=
1

2
dt3σ2

α

 0 −RRR⊤
3 ℓℓℓ

i RRR⊤
2 ℓℓℓ

i

RRR⊤
3 ℓℓℓ

i 0 −RRR⊤
1 ℓℓℓ

i

−RRR⊤
2 ℓℓℓ

i RRR⊤
1 ℓℓℓ

i 0

 (26)

Erα =

E1
rα

. . .
En

rα

 ∈ R3n×3 (27)

This is easily calculated during each time step. Finally, Err

remains to be simplified. We can first expand Equation 18 by
temporarily using the notation R̈ = ([ωωωk]

2
× + [αααk]×)Rk for

convenience.

13

Eji
rr =

1

4
dt4E

{
c̈̈c̈ckc̈̈c̈c

⊤
k + c̈̈c̈ck(ℓℓℓ

j)⊤R̈⊤ + R̈ℓℓℓic̈̈c̈c⊤k + R̈ℓℓℓi(ℓℓℓj)⊤R̈⊤
}

The middle two terms disappear in the expectation since c̈̈c̈ck and
αααk (in R̈) are iid and zero mean. The first term also simplifies
trivially to σ2

cI3. The last term expands to

E
{
R̈ℓℓℓi(ℓℓℓj)⊤R̈⊤

}
= [ωωω]2×Rkℓℓℓ

i(ℓℓℓj)⊤R⊤
k [ωωω]

2
×+

E
{
[ααα]×Rkℓℓℓ

i(ℓℓℓj)⊤R⊤
k [ααα]

⊤
×
}

Two additional terms are first order in αααk so their expectations
equal 0. After extensive ugly simplification, and again using
the rows of Rk, the second term becomes:

E
{
[ααα]×Rkℓℓℓ

i(ℓℓℓj)⊤R⊤
k [ααα]

⊤
×
}
= Gijσ2

α (28)

Where Gij =

gij3 + gij2 0 0

0 gij3 − gij1 0

0 0 gij1 + gij2


And gijl = (R⊤

l ℓℓℓi)
⊤(R⊤

l ℓℓℓj)

The process covariance of the marker locations is then

Err =

E
11
rr . . . E1n

rr
...

. . .
...

En1
rr . . . Enn

 ∈ R3n×3n (29)

Where Eji
rr =

1

4
dt4

(
σ2
cI3 + [ωωω]2×Rkℓℓℓ

i(ℓℓℓj)⊤R⊤
k [ωωω]

2
× +Gijσ2

α

)
Thus, finally, we obtain the process covariance matrix:

Pproc =


Err Erα

1

2
dt3σ2

cI3

E⊤
rα dt2σ2

αI3 03
1

2
dt3σ2

cI3 03 dt2σ2
cI3

 (30)

Where Err is given in Equation 29 and Erα is given in
Equation 27. Knowing this covariance matrix is important for
accurate state updates.

REFERENCES

[1] A. C. C. Reyes, N. P. A. Del Gallego, and J. A. P. Deja, “Mixed reality
guidance system for motherboard assembly using tangible augmented
reality,” in Proceedings of the 2020 4th International Conference on
Virtual and Augmented Reality Simulations, pp. 1–6, 2020.

[2] N. Gavish, T. Gutiérrez, S. Webel, J. Rodrı́guez, M. Peveri, U. Bockholt,
and F. Tecchia, “Evaluating virtual reality and augmented reality training
for industrial maintenance and assembly tasks,” Interactive Learning
Environments, vol. 23, no. 6, pp. 778–798, 2015.

[3] S. Henderson and S. Feiner, “Exploring the benefits of augmented
reality documentation for maintenance and repair,” IEEE transactions
on visualization and computer graphics, vol. 17, no. 10, pp. 1355–1368,
2010.

[4] R. Tang, X.-D. Yang, S. Bateman, J. Jorge, and A. Tang, “Physio@
home: Exploring visual guidance and feedback techniques for physio-
therapy exercises,” in Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, pp. 4123–4132, 2015.

[5] Y. A. Sekhavat and M. S. Namani, “Projection-based ar: Effective visual
feedback in gait rehabilitation,” IEEE Transactions on Human-Machine
Systems, vol. 48, no. 6, pp. 626–636, 2018.

[6] C. Leuze, G. Yang, B. Hargreaves, B. Daniel, and J. A. McNab,
“Mixed-reality guidance for brain stimulation treatment of depression,”
in 2018 IEEE International Symposium on Mixed and Augmented Reality
Adjunct (ISMAR-Adjunct), pp. 377–380, IEEE, 2018.

[7] M. Rosenthal, A. State, J. Lee, G. Hirota, J. Ackerman, K. Keller,
E. D. Pisano, M. Jiroutek, K. Muller, and H. Fuchs, “Augmented reality
guidance for needle biopsies: an initial randomized, controlled trial in
phantoms,” Medical Image Analysis, vol. 6, no. 3, pp. 313–320, 2002.

[8] L. Groves, N. Li, T. M. Peters, and E. C. Chen, “Towards a first-person
perspective mixed reality guidance system for needle interventions,”
Journal of Imaging, vol. 8, no. 1, p. 7, 2022.

[9] J. Cartucho, D. Shapira, H. Ashrafian, and S. Giannarou, “Multimodal
mixed reality visualisation for intraoperative surgical guidance,” Inter-
national journal of computer assisted radiology and surgery, vol. 15,
pp. 819–826, 2020.

[10] T. Nozawa, E. Wu, F. Perteneder, and H. Koike, “Visualizing expert
motion for guidance in a vr ski simulator,” in ACM SIGGRAPH 2019
Posters, pp. 1–2, 2019.

[11] T. N. Hoang, M. Reinoso, F. Vetere, and E. Tanin, “Onebody: remote
posture guidance system using first person view in virtual environment,”
in Proceedings of the 9th Nordic Conference on Human-Computer
Interaction, pp. 1–10, 2016.

[12] D. Black, Y. Oloumi Yazdi, A. H. Hadi Hosseinabadi, and S. Salcudean,
“Human teleoperation-a haptically enabled mixed reality system for
teleultrasound,” Human–Computer Interaction, pp. 1–24, 2023.

[13] D. Black and S. Salcudean, “Mixed reality human teleoperation,” in 2023
IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts
and Workshops (VRW), pp. 375–383, IEEE, 2023.

[14] H. Iqbal, F. Tatti, and F. R. y Baena, “Augmented reality in robotic
assisted orthopaedic surgery: A pilot study,” Journal of Biomedical
Informatics, vol. 120, p. 103841, 2021.

[15] J. T. Verhey, J. M. Haglin, E. M. Verhey, and D. E. Hartigan, “Vir-
tual, augmented, and mixed reality applications in orthopedic surgery,”
The International Journal of Medical Robotics and Computer Assisted
Surgery, vol. 16, no. 2, p. e2067, 2020.

[16] D. Black, A. H. Hadi Hosseinabadi, N. Rangga Pradniyawira,
P. Maxime, M. Nogami, and S. Salcudean, “Towards differential mag-
netic force sensing for ultrasound teleoperation,” in IEEE World Haptics
Conference, IEEE, 2023.

[17] M. H. Mozaffari and W.-S. Lee, “Freehand 3-d ultrasound imaging: a
systematic review,” Ultrasound in medicine & biology, vol. 43, no. 10,
pp. 2099–2124, 2017.

[18] B. Hannaford and R. Anderson, “Experimental and simulation studies
of hard contact in force reflecting teleoperation,” in Proceedings. 1988
IEEE International Conference on Robotics and Automation, pp. 584–
589, IEEE, 1988.

[19] R. Daniel and P. R. McAree, “Fundamental limits of performance for
force reflecting teleoperation,” The international journal of robotics
research, vol. 17, no. 8, pp. 811–830, 1998.

[20] C. Reboulet, Y. Plihon, and Y. Briere, “Interest of the dual hybrid control
scheme for teleoperation with time delays for proceeding of iser’95,” in
Experimental Robotics IV, pp. 498–506, Springer, 1997.

[21] C. R. Flatau, “Sm-229: a new compact servo master-slave manipulator,”
in Proceedings of the 25th conference on remote systems technology,
1977.

[22] K. J. Kuchenbecker and G. Niemeyer, “Induced master motion in force-
reflecting teleoperation,” 2006.

[23] K. Hashtrudi-Zaad and S. Salcudean, “Analysis and evaluation of stabil-
ity and performance robustness for teleoperation control architectures,”
in Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), vol. 4, pp. 3107–3113 vol.4, 2000.

[24] K. Hashtrudi-Zaad and S. E. Salcudean, “Transparency in time-delayed
systems and the effect of local force feedback for transparent teleoper-
ation,” IEEE Transactions on Robotics and Automation, vol. 18, no. 1,
pp. 108–114, 2002.

[25] S. E. Salcudean, K. Hashtrudi-Zaad, S. Tafazoli, S. P. DiMaio, and
C. Reboulet, “Bilateral matched impedance teleoperation with appli-
cation to excavator control,” IEEE Control Systems Magazine, vol. 19,
no. 6, pp. 29–37, 1999.

[26] A. Aziminejad, M. Tavakoli, R. V. Patel, and M. Moallem, “Transparent
time-delayed bilateral teleoperation using wave variables,” IEEE Trans-
actions on Control Systems Technology, vol. 16, no. 3, pp. 548–555,
2008.

[27] K. Dorfmüller-Ulhaas, “Robust optical user motion tracking using a
kalman filter,” 2007.

[28] Y. Qi, H. Sadjadi, C. T. Yeo, K. Hashtrudi-Zaad, and G. Fichtinger,
“Electromagnetic tracking performance analysis and optimization,” in
2014 36th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pp. 6534–6538, IEEE, 2014.

14

[29] A. Lang, P. Mousavi, G. Fichtinger, and P. Abolmaesumi, “Fusion of
electromagnetic tracking with speckle-tracked 3d freehand ultrasound
using an unscented kalman filter,” in Medical Imaging 2009: Ultrasonic
Imaging and Signal Processing, vol. 7265, pp. 399–410, SPIE, 2009.

[30] A. Vaccarella, E. De Momi, A. Enquobahrie, and G. Ferrigno, “Un-
scented kalman filter based sensor fusion for robust optical and elec-
tromagnetic tracking in surgical navigation,” IEEE Transactions on
Instrumentation and Measurement, vol. 62, no. 7, pp. 2067–2081, 2013.

[31] C. He, P. Kazanzides, H. T. Sen, S. Kim, and Y. Liu, “An inertial
and optical sensor fusion approach for six degree-of-freedom pose
estimation,” Sensors, vol. 15, no. 7, pp. 16448–16465, 2015.

[32] R. Van Der Merwe and E. A. Wan, “The square-root unscented kalman
filter for state and parameter-estimation,” in 2001 IEEE international
conference on acoustics, speech, and signal processing. Proceedings
(Cat. No. 01CH37221), vol. 6, pp. 3461–3464, IEEE, 2001.

[33] S. Julier and J. Uhlmann, “Unscented filtering and nonlinear estimation,”
Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[34] C. Vijayakumar and R. Rajagopal, “Passive target tracking by unscented
filters,” in Proceedings of IEEE International Conference on Industrial
Technology 2000 (IEEE Cat. No.00TH8482), vol. 2, pp. 129–134 vol.1,
2000.

[35] Y. Xu and L. Liping, “Single observer bearings-only tracking with
the unscented kalman filter,” in 2004 International Conference on
Communications, Circuits and Systems (IEEE Cat. No.04EX914), vol. 2,
pp. 901–905 Vol.2, 2004.

[36] R. Zhan and J. Wan, “Iterated unscented kalman filter for passive target
tracking,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 43, no. 3, pp. 1155–1163, 2007.

[37] N. Enayati, E. De Momi, and G. Ferrigno, “A quaternion-based un-
scented kalman filter for robust optical/inertial motion tracking in
computer-assisted surgery,” IEEE Transactions on Instrumentation and
Measurement, vol. 64, no. 8, pp. 2291–2301, 2015.

[38] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marı́n-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280–2292, 2014.

[39] P. Kriechling, R. Loucas, M. Loucas, F. Casari, P. Fürnstahl, and
K. Wieser, “Augmented reality through head-mounted display for nav-
igation of baseplate component placement in reverse total shoulder
arthroplasty: a cadaveric study,” Archives of Orthopaedic and Trauma
Surgery, vol. 143, no. 1, pp. 169–175, 2023.

[40] F. Müller, S. Roner, F. Liebmann, J. M. Spirig, P. Fürnstahl, and
M. Farshad, “Augmented reality navigation for spinal pedicle screw
instrumentation using intraoperative 3d imaging,” The Spine Journal,
vol. 20, no. 4, pp. 621–628, 2020.

[41] C. Gsaxner, J. Li, A. Pepe, D. Schmalstieg, and J. Egger, “Inside-out
instrument tracking for surgical navigation in augmented reality,” in
Proceedings of the 27th ACM Symposium on Virtual Reality Software
and Technology, pp. 1–11, 2021.

[42] C. Kunz, P. Maurer, F. Kees, P. Henrich, C. Marzi, M. Hlaváč,
M. Schneider, and F. Mathis-Ullrich, “Infrared marker tracking with
the hololens for neurosurgical interventions,” Current Directions in
Biomedical Engineering, vol. 6, no. 1, 2020.

[43] H. Iqbal and F. R. y Baena, “Semi-automatic infrared calibration for
augmented reality systems in surgery,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4957–4964,
IEEE, 2022.

[44] A. Martin-Gomez, H. Li, T. Song, S. Yang, G. Wang, H. Ding, N. Navab,
Z. Zhao, and M. Armand, “Sttar: surgical tool tracking using off-the-
shelf augmented reality head-mounted displays,” IEEE Transactions on
Visualization and Computer Graphics, 2023.

[45] L. Di Stefano, M. Marchionni, and S. Mattoccia, “A fast area-based
stereo matching algorithm,” Image and vision computing, vol. 22, no. 12,
pp. 983–1005, 2004.

[46] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Asian conference on computer vision, pp. 25–38, Springer,
2010.

[47] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the seventh IEEE international conference on computer
vision, vol. 2, pp. 1150–1157, Ieee, 1999.

[48] H. Chui and A. Rangarajan, “A new point matching algorithm for non-
rigid registration,” Computer Vision and Image Understanding, vol. 89,
no. 2-3, pp. 114–141, 2003.

[49] G. Shi, X. Xu, and Y. Dai, “Sift feature point matching based on
improved ransac algorithm,” in 2013 5th International Conference on
Intelligent Human-Machine Systems and Cybernetics, vol. 1, pp. 474–
477, IEEE, 2013.

[50] C. Yuan, X. Yu, and Z. Luo, “3d point cloud matching based on principal
component analysis and iterative closest point algorithm,” in 2016
International Conference on Audio, Language and Image Processing
(ICALIP), pp. 404–408, IEEE, 2016.

[51] S. Oomori, T. Nishida, and S. Kurogi, “Point cloud matching using
singular value decomposition,” Artificial Life and Robotics, vol. 21,
pp. 149–154, 2016.

[52] Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The perfect match:
3d point cloud matching with smoothed densities,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pp. 5545–5554, 2019.

[53] B. Schwald, “A tracking algorithm for rigid point-based marker models,”
2005.

[54] D. Ungureanu, F. Bogo, S. Galliani, P. Sama, X. Duan, C. Meekhof,
J. Stühmer, T. J. Cashman, B. Tekin, J. L. Schönberger, et al., “Hololens
2 research mode as a tool for computer vision research,” arXiv preprint
arXiv:2008.11239, 2020.

[55] J. Lawrence, J. Bernal, and C. Witzgall, “A purely algebraic justification
of the kabsch-umeyama algorithm,” Journal of research of the National
Institute of Standards and Technology, vol. 124, p. 1, 2019.

[56] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[57] M. I. Ribeiro, “Kalman and extended kalman filters: Concept, derivation
and properties,” Institute for Systems and Robotics, vol. 43, no. 46,
pp. 3736–3741, 2004.

[58] S. Yang and M. Baum, “Extended kalman filter for extended object
tracking,” in 2017 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pp. 4386–4390, IEEE, 2017.

[59] D. Black, D. Andjelic, and S. Salcudean, “Evaluation of communication
and human response latency for (human) teleoperation,” TechRxiv, 2022.

[60] D. Black and S. Salcudean, “Human-as-a-robot performance in mixed
reality teleultrasound,” International Journal of Computer Assisted Ra-
diology and Surgery, pp. 1–8, 2023.

[61] F. Steinicke, C. P. Jansen, K. H. Hinrichs, J. Vahrenhold, and B. Schwald,
“Generating optimized marker-based rigid bodies for optical tracking
systems.,” in VISAPP (2), pp. 387–395, Citeseer, 2007.

[62] G. W. Stewart, Matrix algorithms: volume 1: basic decompositions.
SIAM, 1998.

[63] T. A. Davis and W. W. Hager, “Modifying a sparse cholesky factoriza-
tion,” SIAM Journal on Matrix Analysis and Applications, vol. 20, no. 3,
pp. 606–627, 1999.

[64] M. Seeger, “Low rank updates for the cholesky decomposition,” tech.
rep., 2004.

[65] O. Krause and C. Igel, “A more efficient rank-one covariance matrix
update for evolution strategies,” in Proceedings of the 2015 ACM
Conference on Foundations of Genetic Algorithms XIII, pp. 129–136,
2015.

	Introduction
	Methods
	Pose Tracking Pipeline
	Hardware and Measurement
	Pose Computation
	Pre-processing and Point Correspondence
	Kalman Filter
	Testing

	Results
	Discussion
	Conclusion
	Supplementary Material
	Appendix
	Pose Computation from Points:
	Frobenius Norm-Based Matching
	State Equation
	Square-Root Unscented Kalman Filter

	References

