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Abstract

Background Complete resection of malignant gliomas is hampered by the difficulty in
distinguishing tumor cells at the infiltration zone. Fluorescence guidancewith 5-ALA assists
in reaching this goal. Using hyperspectral imaging, previous work characterized five
fluorophores’ emission spectra in most human brain tumors.
Methods In this paper, the effectiveness of these five spectra was explored for different
tumor and tissue classification tasks in 184 patients (891 hyperspectral measurements)
harboring low- (n = 30) and high-grade gliomas (n = 115), non-glial primary brain tumors
(n = 19), radiation necrosis (n = 2), miscellaneous (n = 10) and metastases (n = 8). Four
machine-learning models were trained to classify tumor type, grade, glioma margins, and
IDH mutation.
Results Using random forests and multilayer perceptrons, the classifiers achieve average
test accuracies of 84–87%, 96.1%, 86%, and 91% respectively. All five fluorophore
abundances vary between tumor margin types and tumor grades (p < 0.01). For tissue type,
at least four of the five fluorophore abundances are significantly different (p < 0.01) between
all classes.
Conclusions These results demonstrate the fluorophores’ differing abundances in different
tissue classes and the value of the five fluorophores aspotential optical biomarkers, opening
new opportunities for intraoperative classification systems in fluorescence-guided
neurosurgery.

Surgical resection of malignant glioma is complex, and recurrences are the
rule rather than the exception, leading to patients’ poor prognosis1. This is
partly due to poorly differentiated tumor tissue, especially at infiltrating
margins, closely resembling healthy tissue during surgery2. To address this
problem, 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX
(PpIX) fluorescence guidance has been established as a surgical adjunct in
neurosurgery. The complete resection rate for contrast-enhancing tumors
increased, in the initial approval study from2006, from36%operated under
white light only to 65% for resections with fluorescence guidance2.
Improvements in neuroimaging and different surgical adjuncts, such as
intraoperative ultrasound, pre- and intra-operative brain mapping, and

monitoring techniques, amongst others, currently allow for over 95%
complete resection rates, whenever feasible3. Consequently, PpIX fluores-
cence is widely used in the resection of high-grade gliomas. Furthermore, it
is the subject of research in low-grade gliomas4–7, meningiomas8–11, and
other brain tumors12, as well as in oral cancer13,14, bladder cancer15,16, and
skin cancer17. Additionally, 5-ALA is used for photodynamic therapy18, to
treat skin and other brain malignancies19.

Fluorescence is achieved by administering 5-ALA orally prior to
surgery1, which is metabolized to PpIX, a precursor in heme biosynthesis.
The mechanisms leading to the selective accumulation of PpIX in glioma
cells20 are not entirely understood1,11,21. Several explanations have been
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Plain language summary

Complete surgical removal of some primary
brain tumors isdifficult because it canbehard
to distinguish the edge of the tumor. We
evaluated whether the edges of tumors and
the tumor type and grade can be more
accurately determined if the tumor is imaged
usingmany different wavelengths of light.We
usedmeasurements taken from the tumors of
people undergoing brain tumor surgery and
developed machine-learning algorithms that
could predict where the edge of the tumor
was. The methods could also provide infor-
mation about the type and grade of the brain
tumor. These classifications could potentially
be used during operations to remove brain
tumorsmore accurately and thus improve the
outcome of surgery for people with brain
tumors.
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proposed, including disruption of the blood-brain barrier, as commonly
observed in high-grade gliomas (HGG), which is otherwise non-permeable
to 5-ALA1,7,22. Reduced activity of ferrochelatase, which would otherwise
metabolize PpIX15,21,23, and changes in the tumor microenvironment
affecting 5-ALA uptake and PpIX efflux24–26 may play a part as well. How-
ever, PpIX is present in increased concentrations 7–8 hours after 5-ALA
administration in HGG27. PpIX fluoresces after illumination with intense
405 nm (blue) light. Absorption of such a photon lifts the molecule to an
excited state, decreasing slightly through vibrational relaxation before
returning to its ground state and emitting a second photon28. Due to the
decrease in energy before the second transition, the emitted photon has a
longer wavelength of around 634 nm (red). This energy change called the
Stokes shift, allows the red fluorescing areas to be differentiated from the
otherwise blue-reflecting tissue29.

With optical highpass filters such as the BLUE400 and BLUE400 AR
systems (Carl Zeiss Meditec AG, Oberkochen, Germany) that block the
relatively intense reflected blue light but transmit the red fluorescence,
surgeons can differentiate 5-ALA positive tumor from surrounding
tissue30,31. This has led to widespread adoption. However, the proven
increased resection rates are only for malignant glioma. Unfortunately,
many lower-grade gliomas and even some with high-grade regions exhibit
low PpIX accumulation and do not visibly fluoresce. Furthermore, auto-
fluorescence makes it impossible to discern the diminished PpIX fluores-
cence even when imaging sensitivity is increased because it shares the same
spectral range as the PpIX emission32–35.

Hence, quantitative spectroscopic systems have been developed that
measure the emission spectra and separate PpIX from autofluorescence
through a priori knowledge of the fluorophores present and their individual
emission spectra35–37. These devices have been used primarily in research
and consist of either point probes5,8,37–39 or wide-field hyperspectral12,40,41

devices. In addition to potential future intraoperative use to help distinguish
tumors, spectroscopy can answer many questions about different
diseases23,36, how best to treat them27,40,41, and how to improve imaging
systems for future intra-operative integration12,42.

One potential use of such a system is to distinguish between different
tissue types. Several classifications are commonly applied to brain tumors,
including the tumor type (e.g., glioma, metastasis, medulloblastoma, and
others43). Additionally, the differentiation of tumor from non-tumor or
necrotic tissue (e.g., radiation necrosis, which can radiologically mimic
tumor progression) is relevant in neuro-oncology and neurosurgery. Dif-
ferent tissue types differ substantially in behavior and prognosis, so their
correct identification is paramount. Several studies have classified brain
tumor type in MR images44,45, but the same has not been attempted with
fluorescence.

Furthermore, gliomas are classified according to their histological,
genetic features, and biological behavior46. They are categorized as grade
I-IV by the World Health Organization (WHO) classification system,
where traditionally, I and II are considered lowgrade, and III and IVarehigh
grade47, indicating a bad prognosis48. Molecular parameters, i.e., isocitrate
dehydrogenase (IDH)-mutation, O6-methylguanine-DNA-
methyltransferase (MGMT), among others, assist in further subclassifica-
tion of these tumors49. We aim to predict tumor molecular characteristics,
such as IDH mutations or genetic aberrations related to malignancy, by
correlation with the spectral signature of tumors. Such knowledge would
directly result in changes to surgical strategy. IDHmutations cause a shift in
enzymatic activity, converting α-ketoglutarate to 2-hydroxyglutarate and
inhibiting α-KG-dependent enzymes. This leads to metabolic reprogram-
ming, hinders cell differentiation, and initiates tumorigenesis50. Small
molecule inhibitors can reverse this process, making knowledge of IDH
mutation status crucial for guiding their targeted use in treatment. Knowing
a tumor’s grade or molecular characteristics could also help make decisions
during and after surgery. The tumor types are shown in Supplementary
Fig. 2. Some studies have performed automatic classification of tumor grade
using convolutional neural networks (CNN) on magnetic resonance
images51 and digitized histopathology slides52, but not through fluorescence.

Additionally, one of the primary difficulties of resection of grade II, III,
and IV gliomas is the infiltrative nature of the tumors. Around the solid
tumor portion, there is a region of infiltrative margin characterized by
decreased tumor cellularity transitioning tohealthy tissue53. To delineate the
margins, guidance from pre-operative MRI images is commonly used in
intraoperative neuronavigation systems54, but its accuracy suffers from
factors such as brain shift55. Differentiatingmore accurately betweenmargin
regions would significantly enhance the effectiveness of surgical resection of
glioma and patients’ outcomes56,57. Leclerc et al. presented the first work
applying machine learning (ML) to neurosurgical fluorescence spectro-
scopy, classifying different tissues based on principal component analysis
(PCA) of the fluorescence spectra58, achieving 77% accuracy on 50 samples.

Although previous work has correlated PpIX fluorescence withWHO
grade and tumor margins59, it is not well understood how different tumor
types affect the abundances of the different fluorophores60. Through recent
characterization of their basis spectra35, we can now precisely analyze the
abundances of themajorfluorophores inhyperspectralfluorescence images.
Hence, it is possible to study how the two photo-states of PpIX and the
autofluorescence from flavins (i.e., flavin adenine dinucleotide), NADH,
and lipofuscin are affected by the tissue type. This paper performs four
classification tasks using fluorescence spectroscopy, aiming to use the
abundances of the five fluorophores to differentiate between (1) tumor and
tissue types (e.g., glioblastoma, meningioma, etc.), (2) WHO grades, (3)
between solid tumor, infiltrating zone, and reactively altered non-tumor
brain tissue, and (4) between IDH-mutant and IDH-wildtype glioma.Using
random forests and multilayer perceptron, the classifiers achieve average
test accuracies of 84–87%, 96.1%, 86%, and 91%, respectively, thus
demonstrating the fluorophores’ differing abundances in different tissue
classes and the value of thefivefluorophores as potential optical biomarkers.
This invites further research into intraoperative classification systems in
fluorescence-guided neurosurgery.

Methods
Device and Dataset
A hyperspectral imaging device was used, as previously described27,41,59, and
outlined below. Patients received 5-ALA orally at a dose of 20mg/k.g. b.w.,
four hours prior to anesthesia induction for tumor resection surgery, as per
routine practice in cases of suspected malignant gliomas. All Patients con-
sented to the use of 5-ALA for fluorescence-guided resection. The tumor
entity is not known prior to surgery. Thus, occasionally, patients harboring
distinct tumor types also received 5-ALA. All ex vivo data collection was
carried out with informed consent, complied with institutional guidelines,
and was approved by the ethical committee of the University of Münster.

Tissue samples were resected during surgery and measured directly
ex vivo on a petri dish. The sample was first illuminated with blue light
(405 nm LED), then with no light for recording background noise, and
finally with broadband white light. During each illumination phase, the
emitted light from fluorescence and the reflected light were gathered in the
objective lens (OPMI Pico - Carl Zeiss AG, Oberkochen, Germany) and
routed to a scientific metal oxide semiconductor (sCMOS - PCO.Edge,
Excellitas Technologies GmbH, Wiesbaden, Germany) camera through a
series of optical filters. The first filters removed the intense blue reflected
light. Next, a liquid crystal tunable bandpass filter (LCTF - Meadowlark
Optics, Frederick, CO) transmitted a narrow spectral band of the emitted
light to the sCMOS. The LCTF was swept across the visible range
(420–730 nm) in 3–5 nm increments, during each of which a grayscale
image was captured by the sCMOS. In this way, a hyperspectral data cube
containing all the spectral and spatial information was generated. Any pixel
can be selected, and an emission spectrum extracted for that pixel from the
cube. Figure 1 shows 1000 examples of typical measured spectra. During
blue-light illumination, the fluorescence spectra were captured. The white-
light illuminated data cube was used for dual-band normalization42, and the
no-light spectra were used to remove the dark noise of the camera sensor
from the images. Total acquisition time with 500ms exposure time for each
image is 3–4minutes. This ensures a good signal-to-noise ratio, even with
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very little fluorescence. Each image was 2048 × 2048 pixels with 47.62 pixels
per mm.

This device was used for ex vivo analysis of tumor biopsies at the
University Hospital Münster, Germany. Typical samples had an average
diameter of 288 pixels, or 6mm, and ranged from approximately 4 to
10mm. The resulting data set was used in this study to explore the effect of
different classifications of tumors on the presence of the five main fluor-
ophores. In particular, we analyzed tumor type, WHO grade, and whether
the sample is from solid tumor, infiltrating zone, or non-tumor. The classes
and number of samples are shown below and were chosen based on the
availability of patient data.Many samplesweremeasuredbefore theupdated
WHO classification (CNS5, 2021)47 and thus followed the previous 2016
WHO classification system49.

Tissue Type Classification: (n = 632 biopsies)
Pilocytic astrocytoma (PA; n = 5), diffuse astrocytoma (DA; n = 57),

anaplastic astrocytoma (AA; n = 51), glioblastoma (GB; n = 410), grade II
oligodendroglioma (OD; n = 24), ganglioglioma (GG, n = 4), medullo-
blastoma (MB; n = 6), anaplastic ependymoma (AE; n = 8), anaplastic oli-
godendroglioma (AO; n = 4), meningioma (MN; n = 37), metastasis (MT;
n = 6), radiation necrosis (RN; n = 20).

Margin Classification: (n = 288 biopsies)
Solid tumor (ST; n = 131), infiltrating zone (IZ; n = 57), reactively

altered brain tissue (RABT; n = 100).
WHO Grade Classification: (n = 571 biopsies)
Grades I (n = 9), II (n = 84), III (n = 57), IV (n = 421).
IDH Classification: (n = 411 biopsies)
IDH-mutant (n = 126), IDH-wildtype (n = 285)
Note that the RABT class is the tissue outside the infiltration zone that

cannot be classified as a solid tumor or infiltration zone. Intraoperatively, it
is imperative to differentiate this from tumor tissue, which can be viewed as
healthy tissue. It is otherwise unethical to biopsy healthy brain tissue.

The biopsies varied in size and shape, but approximately
100–1000 spectra were extracted from each. Regions of 10 × 10 pixels were
averaged to produce one spectrum for noise reduction, and the regionswere
non-overlapping to ensure each data point was independent. For a given
classification task, spectra were sampled randomly from the tumor portions
of the biopsies. To avoid inadvertently sampling from the background glass
slide, the tumor was first segmented automatically in MATLAB using the
634 nm fluorescence image. The result is shown in step 2 of Fig. 2; the
resulting masks were also checked manually.

The raw fluorescence spectra were corrected, normalized, and
unmixed as described previously12,35. Each fluorescence spectrum is
assumed to consist of a linear combination of five fluorophores whose
spectra are known a priori. These basis spectra are the two photo-states of

PpIX (denotedPpIX634 andPpIX620)36,37, NADH, lipofuscin, andflavins35.
The example measured and the basis spectra are described and shown in
Fig. 2 and in previous work35. The unmixing calculates the abundances
of the five spectra by minimizing the squared error between the measured
spectrum and a linear combination of the five spectra. If the basis spectra
are combined as columns in a 310 × 5 matrix B, the measured
spectrum is the 310×1vector y, and the 5×1 vector of abundances is c, then
we find c as

c ¼ argmin
c

1
2
jjy � Bcjj2

� �

using non-negative least squares. This is illustrated in steps 3–5 of Fig. 2.

Machine learning approach
With the processed data, we tried several ML classification models using
Python and experimented with different hyperparameters. The various
types are listed in Table 1.

For a given biopsy, instead of using the abundances inferred from only
one pixel, it could be more informative to use those of two or more nearby
pixels. This is attempted in the pixels per samplehyperparameter. Further, to
avoid bias, the same number of samples of each class were used to train the
classifiers. Since some classes had fewer samples, we varied the number of
samples per class. A class with fewer samples than the samples per class
hyperparameter was excluded from the classification. Lower numbers of
samples per class allowed more classes to be included in the classification.
However, more significant numbers of samples per class allowed for more
effective training of the classifiers, though on fewer classes. Classes with few
biopsies, including anaplastic oligodendroglioma and ganglioglioma, had to
be excluded from some tests.

The dataset was split 80/20 into a training and testing set. Hyper-
parameter and model tuning were carried out using 5-fold cross-validation
on the training set to mitigate optimization bias. In total, 195 models were
trained and compared for each classification task. For each of the four
classification tasks, nine datasets were used with varying pixels per sample
and samples per class. Finally, the best model was selected for each category
and evaluated with the test set. The receiver operating characteristic curves
(ROC) were determined to evaluate the multiclass classifiers, and the area
under the curve (AUC) was computed. Accuracy was calculated as the
number of correctly classified samples divided by the total number of
samples. Confusion matrices were used to determine which classes per-
formed better than others.

We also explored whether the calculated abundances were the most
informative space to characterize the biopsies. Instead of relying on the five

Fig. 1 | Typical ExampleMeasured Spectra.The plot of representative 1000 spectra sampled randomly from the complete dataset (left). Furthermore, we added a zoomed-in
view of some typical weak spectra, where the different autofluorescence contributions can be visualized, not just PpIX.
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basis spectra, we repeated the above experiments with the mathematically
optimal projection of the spectra onto a 5-dimensional hyperplane using
principal component analysis (PCA). We used the same number of pixels
per sample, samples per class, and all other hyperparameters as above. We
also visualized the different classes using only the first two or three principal
components in a scatter plot. PCA finds a set of orthogonal axes, which
maximizes the variance. Depending on assumptions about the signal and
noise distributions, thismaximizes themutual information between the real
signal and the dimensionally-reduced output61. Nonetheless, some infor-
mation was lost. To quantify how well PCA represents the original data, we
utilized the variance explained parameter. Given a data matrix of fluores-
cence spectra, a covariance matrix whose diagonal elements (the variances)
sum to the overall variability can be computed. When performing
n-component PCA, only the n principal components corresponding with
the n largest eigenvalues were kept. All the eigenvalues sum to the overall
variability, sobychoosingonly then-largest,we lost someof the information
contained in the data. In particular, the ratio of the sum of the n selected
eigenvalues over the total variability was called the variance explained. It
effectively yielded the percent of total information the chosen principal
components represented.

Statistics and reproducibility. Statistical analyses were performed to
determine correlations and statistical significance. This analysis was
performed inMATLABusing the two-sampleKolmogorov-Smirnov test.
Python and SciKit-Learn were used for the machine learning algorithms.
The entire process, from imaging to data processing and extraction to
analysis, is shown in Fig. 2, and the raw results and all p values are found
in Supplementary Data 1 and 2, respectively.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
As explained in detail in the Methods section, four classification tasks were
explored. Tumor types belonged to the following classes: Pilocytic astro-
cytoma (PA), diffuse astrocytoma (DA), anaplastic astrocytoma (AA),
glioblastoma (GB), grade II oligodendroglioma (OD), ganglioglioma (GG),
medulloblastoma (MB), anaplastic ependymoma (AE), anaplastic oligo-
dendroglioma (AO), meningioma (MN), metastasis (MT), and radiation
necrosis (RN). Tumormargin classification was performed on three classes:
solid tumor (ST), infiltrating zone (IZ), and reactively altered brain tissue
(RABT). Reactively altered brain tissue can be considered as healthy tissue.
IDH status (mutated and wildtype) was further assessed. Finally, WHO
grades II, III, and IV were considered. After hyper-parameter tuning using
cross-validation on the training dataset, the following results and metrics
were calculated using the test set.

Visualization
Since the five known fluorophore abundances create a 5-dimensional
space, it is impossible to visualize the data and distinguish patterns
manually. Studying scatter plots of two fluorophores at a time would be
feasible, but this would be a reductionistic approach drawing a very
limited picture. Instead, we used PCA for dimensionality reduction,
which results in some information loss. The exact amount of information
lost for each classification is shown in Table 2. However, PCA fails if the
data forms a non-linear manifold. One alternative that captures this more
effectively is t-distributed stochastic neighbor embedding (t-SNE). This
was also used to better visualize the data. Some of the more informative
plots are shown in Fig. 3.

Though drawing conclusions from the visualizations in Fig. 3 is diffi-
cult, it shows that some classes can be visually distinguished from others
with reasonable confidence, even in dimensionally reduced form. Further-
more, Fig. 3a and b show that the fluorophores and PCA give similar
information, suggesting the fluorophore abundances’ utility as informative

Fig. 2 | Overview of the device and method. This shows the steps of the data
processing, from top right to bottom left. The imaging device first captures a
hyperspectral data cube from which the ex vivo tumor tissue is segmented and the
corresponding spectra are extracted, processed, and unmixed into abundance

vectors or dimensionally reduced using PCA. The abundances can be used, for
example, to create a PpIX overlay plot or perform statistical analyses. In this study,
they are used as inputs to machine learning models to classify tumor type, margins,
WHO grades, and IDH mutation.
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input features to ML classifiers. Table 2 additionally demonstrates that
almost all the spectral information is stored in five dimensions, which lends
further credence to the five a priori basis spectra35.

Tissue type classification
Since the tissue type data is categorical, it is not possible to determine
linear correlations. However, pairwise Kolmogorov-Smirnov tests were
used to test the null hypothesis for each fluorophore: abundances from
each pair of classes come from the same distribution. All available spectra
were used in the significance tests for each class, which ranged from200 to
over 5000, depending upon the class. The chosen test (kstest2.m in
MATLAB) does not require equal sample sizes. All class pairs were sig-
nificantly different (p < 0.01) across all thefluorophores except those listed
in Supplementary Table 1. Thus, even if a pair of classes did not differ
significantly in one fluorophore, it did in the remaining four. All p values
are found in Supplementary Data 2.

Both multilayer perceptrons (MLPs) and random forests performed
well for classifying the tumor type. None of the other classifiers were
effective. Performance was better with more pixels per class, partly because
the models were trained on more data and partly because they had to
distinguish between fewer classes. Therefore, we present the best results
overall and the best results from training with all the classes.

The best-performing classifier, including most classes, was a random
forest model (150 trees, 500 samples per class, 3 pixels per sample, square
root of the number of features sqrt(n_features) features per tree, cross-
entropy splitting criterion). The average accuracy was 83.6%, with an AUC
of 0.98 in classifying between all classes. Figure 4 shows this classifier’s
confusion matrix and multiclass ROC.

This shows outstanding performance for some classes and relatively
poor for others. In particular, GB, DA, and AA have low classification

accuracy, and GB is frequently mistaken for AE. However, AE is rare and
generally easy to distinguish visually from healthy tissue, so fluorescence is
not commonly used. Hence, despite its good classification accuracy, AEwas
removed. Additionally, this data used the 2016WHO classification because
it was partly collected before 2021. After the 2021 WHO classification,
however, IDH-wildtype anaplastic astrocytomas are considered GB. Thus,
these samples (n = 33) were re-labeled as GB, and the models were re-
trained.

With these changes, the best-performing model used the same algo-
rithm and hyperparameters as above but gave 87.3% accuracy and an
average AUC of 0.98, as shown in Fig. 5.

We also considered classifying between higher-level groupings of
tumor types (i.e., higher in the hierarchy of Supplementary Fig. 2). The
classeswere glioma,meningioma,medulloblastoma, and radiation necrosis;
ependymoma andmetastasis were excluded for small sample size. The best-
performingmodel for this taskwas anMLP (150neuronsper layer, 3 hidden
layers, 500 samples per class, 2 pixels per sample, Adam solver). The model
achieved 89.8% accuracy and an AUC of 0.97, as shown in Supplementary
Fig. 3. The glioma class is very broad, likely leading to slightly lower accu-
racy. Generally, however, the performance is good. The accuracy is boosted
to 90.67% by using 800 samples per class, which necessitates leaving out
radiation necrosis.

Therefore, tumor type does indeed have a strong effect on the five
fluorophores: strong enough that it is possible to distinguish between eleven
types of tumors and other tissue types with a relatively high degree of
accuracy. Some gliomas, specifically GB, DA, and AA, were difficult to
discern.Meningiomawas also sometimesmisclassified asmedulloblastoma.
On the other hand, many tissue types, including ganglioglioma, radiation
necrosis, and, to a slightly lesserdegree,medulloblastoma, could be classified
with almost perfect accuracy.

Using PCA instead offluorophore abundances to perform this analysis
did not improve results. This is likely due to the fact that PCAdoesnot seem
to provide more information than the fluorophores.

Margin classification in gliomas
The margin classification would be practically useful in an intraoperative
setting. It could delineate solid tumor from infiltrating cells and non-tumor
tissue. However, the distinction is relatively subjective (see Discussion sec-
tion), and as shown in Fig. 3e, there may be substantial overlap between
classes. Again, however, all fluorophore abundances significantly differ
between every category (p < 0.01).

Table 2 | Variance Explained from 2 to 5-Dimensional PCA

PCA Dimension Tumor Type Margin WHO Grade

2 79% 79% 85%

3 87% 89% 93%

4 94% 95% 95%

5 97% 99% 96%

A value of 100%means that all variance is accounted for. With five values, almost no information is
lost, indicating that the 5 primary fluorophores most likely cause the measured emissions.

Table 1 | Explored Classifier Algorithms and Hyperparameters

Pixels per Sample [1, 2, 3]

Samples per Class Tumour Type Margin WHO Grade

[300, 500, 800] [1000, 3000, 5000] [500, 1500, 3000]

Random Forests69 Number of trees: [50, 75, 100, 125, 150]
Splitting Criteria: [Gini, Entropy, Log loss]
Minimum samples to split: [2, 3, 4]
Maximum features per tree: [Square root (sqrt), log2, None]

KNNs70 Number of neighbors: [3, 5, 7, 9]
Weights: [Uniform, Distance]
p: [1, 2]

SVM71 Kernel: [Radial Basis Function (RBF), Linear, Polynomial, Sigmoid]

MLP72 Number of hidden layers: [1,2,3]
Number of neurons: [25, 50, 100, 150]
Activation: ReLU (Rectified linear unit)
Solver: [Adam, Limited-memory BFGS (LBFGS)]
Nesterov Momentum: 0.9

AdaBoost73 Number of estimators: 50
Learning rate: 1.0
Algorithm: SAMME.R

Multilayer perceptron (MLP), support vector machine (SVM), and k-Nearest Neighbor (KNN) classifiers are described in the papers cited in the table.
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Consequently, amultilayer perceptron (5000 samples per class, 3 pixels
per sample, 100 neurons per hidden layer, 5 hidden layers, Adam solver)
distinguishes with 85.7% accuracy and a mean AUC of 0.95, as shown
in Fig. 6.

It is reasonable that the infiltrating zone is the most commonly mis-
taken for solid tumor and reactively altered brain tumor, whereas the latter
two are infrequently confused.

WHO grade classification
Furthermore, knowing what WHO-grade certain tumors or tissue regions
have during an operation would be valuable and further reinforce the
malignant character of the tissue. In practice, many low-grade tumors have
an anaplastic focus,whichfluoresces,while the surrounding tumordoesnot.
All differences in fluorophore abundances between WHO grades were
found to be statistically significant (p < 0.01). For this task, a multilayer
perceptron classifier performed best (3000 samples per class, 3 pixels per

sample, 150 neurons per layer, 5 hidden layers, Adam solver), with 96.1%
accuracy and a testing AUC of 0.99, as shown in Fig. 7.WhileWHO grades
II and III were classified with good accuracy, grade III tumors were more
frequently confused for grade IV.

IDH mutation
Finally, another relevant classification task is the IDH mutation. The best-
performing classifier for IDH mutation was a random forest model (150
trees, all available samples per class, 2 pixels per sample, sqrt(n_features)
features per tree, Shannon entropy splitting criterion). The average accuracy
was 93% in classifying between IDH-mutant and IDH-wildtype tumors.
Figure 8 shows this classifier’s confusion matrix and multiclass ROC.

Discussion
In this paper, fourML-based classifierswere developed for tissue types, IDH
mutation, tumormargins, andgliomaWHOgrades.Each classifier achieved

Fig. 3 | Visualizations of tumor data for different classifications. Several classes
are visually distinguishable or nearly so despite being very low-dimensional repre-
sentations, which is promising for ML classification. Panels a and b compare the
effectiveness of PCA versus fluorophore abundances for visualizing the classes, with
similar results. This suggests that thefluorophore abundances are already close to the
most informative features for representing the data. Subplots c and d show PCA on
WHO grade and tumor margin respectively, while the others show tumor type.
Finally, panel e shows a 3-component T-SNE on tumor type. Here, we see distinc-
tions between some groups, though others, including glioblastoma and astrocytoma,
remain very mixed. All axes are in arbitrary units. WHO grade I and some tumor

types are excluded due to relatively small sample size and unbalanced datasets. The
classification abbreviations are as follows: Pilocytic astrocytoma (PA), diffuse
astrocytoma (DA), anaplastic astrocytoma (AA), glioblastoma (GB), grade II oli-
godendroglioma (OD), ganglioglioma (GG), medulloblastoma (MB), anaplastic
ependymoma (AE), anaplastic oligodendroglioma (AO), meningioma (MN),
metastasis (MT), radiation necrosis (RN), solid tumor (ST), infiltrating zone (IZ),
reactively altered brain tissue (RABT). Several of these tumors were operated on
before 2021 and are therefore classified according to the older WHO classification
system, which is no longer in use.
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Fig. 6 | Tumor Margin Classifier Performance. Confusion matrix and ROC for the best performing MLP classifier of tumor margins. The classes are [1: Solid tumor, 2:
Infiltrating zone, 3: Reactively altered brain tissue].

Fig. 5 | Tumor type classifier performance (NoAE).Confusionmatrix and ROC are used for the best-performing random forest classifier of tumor types with AE excluded,
and IDH-wildtype AA relabeled as GB.

Fig. 4 | Tumor type classifier performance. Confusion matrix and ROC for the best-performing random forest classifier.
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highaccuracy.Themargin classificationaccuracyof 85.7%outperforms that
of Leclerc et al.58 (77% on 50 samples), likely due to the use of much more
data. This represents the accuracy of the model of differentiating tumor
(solid tumor and infiltration zone) from healthy non-tumorous tissue
(reactive brain altered tissue). Our classifier also used fluorophore abun-
dances instead of PCA. Data from 891 hyperspectral measurements of 184
patients was utilized, corresponding to up to 15000 spectra for a given test.
Furthermore, the tissue type andWHOgrade classifications performedwell.
The classifiers achieved an average test accuracy of 87.3% when classifying
between tissue types and 89.5% when classifying between higher-level
groupings of tissue type.

A possible limitation of the accuracies presented in this study is that
some of the training data might be noisy if the automatic tumor segmen-
tation did not work well. This is especially relevant for very small, oddly
shaped biopsies or oneswith a large splash of fluid next to the tumor, which
tended to show up very brightly in the fluorescence images. Themasks were
checked manually, but some background inclusion was inevitable. Current
work explores using convolutional neural networks (CNNs) to improve the
labeling process. Another source of noise in the labels is described in the
Methods and Results sections, as inaccurate or uncertain labeling could
decrease training effectiveness. For instance, the delineation between the
margin classes is not entirely straightforward, and some tumor types are no

longer distinguished since the 2021 WHO classification. This was seen
between Figs. 5 and 6. Future work should be carried out to replicate the
results in different classes, as defined in the 2021WHOclassification system.

The results could likely be improved with more data on the less fre-
quent tumor types (e.g., APXA, ganglioglioma). For the MLP and random
forest models, there was a strong trend of increasing accuracy as we
increased the amount of training data. This could be due to the reduced
number of labels to classify, resulting in a lower probability of error, or
because the training process improved with an increased amount of data. It
is likely a combination of both, but it is promising that with continued data
collection, we will likely be able to improve classification accuracy.

Furthermore, looking at individual spectra or a few randomly selected
ones per biopsy loses spatial information, which might be valuable for the
presented classification tasks and the initial calculation of fluorophore
abundances. Hence, these tasks could benefit from a convolutional
approach that considers spatial information and translational invariance.
Futureworkwill explore inputting the hyperspectral data cubesdirectly into
a CNN62. In general, we have only considered relatively simple, off-the-shelf
models, so accuracy may be improved by considering other learning algo-
rithms. In our tests, random forest models outperformed MLP models for
every task. However, with more data or more careful design of the neural
network architecture and hyperparameters, a neural network would be

Fig. 7 | WHO Grade Classifier Performance. Confusion matrix and ROC for the best performing random forest classifier of WHO grades. The classes are [2: Grade II, 3:
Grade III, 4: Grade IV].

Fig. 8 | IDHMutationClassifier Performance.Confusionmatrix andROC for the best performing random forest classifier of IDHmutation (1 =mutant, 0 =wildtype). The
classifier could predict IDH mutation with an accuracy of 93%.
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expected to outperform the random forests. This is left for future work as
this paper focuses on establishing the feasibility of a fluorescence-based
approach to tumor classification.

IDH mutations are oncogenic drivers in gliomas and act as a relevant
prognosticmarker for these tumors63. Thus, having this information during
surgery could be valuable. In the context of eloquence, a surgeonmay adopt
a less aggressive approach in younger patients upon identifying an IDH-
mutant oligodendroglioma. In the case of an IDH-wildtype tumor, the
survival chances would increase relevantly by maximizing resection, and
thus an aggressive surgery would be warranted. Ourmodel can differentiate
mutations in IDH with an accuracy of 93%. This is promising for future
intraoperative applications.

The labeling of biopsies assumes that the entire biopsy belongs to a
particular class. This is a reasonable assumption as the biopsies are small
(typically 4–10mm diameter), carefully removed, and thus relatively
homogeneous. In general, however, the tissue is very heterogeneous, and the
distinction between classes is blurred. This could introduce noise into the
margin classification training data. For example, a pixel from a biopsy
labeled solid tumormight be in a small region of infiltrating tumor and thus
be incorrectly labeled. This could partially explain why the classification
accuracy is only 85.7%.Theonlyway to improve thiswouldbe to register the
fluorescence image spatially with the histopathology to obtain a pixel-for-
pixelmap of class labels.However, the histopathological assessment ismade
from thin biopsy slices in unknown orientations and planes, so spatial
registration is infeasible with the current setup and constitutes future work.

In addition, heterogeneity is an issue not only for an ML classifier but
also for pathologists. The categorization of tumormargins can be subjective,
and there is an intra-observer variability among different pathologists and
centers, which affects the testing dataset64,65. Thus, it is likely that the clas-
sificationmodel presented in this paperwould performbetter if pathologists
applied a standardized, quantitative measure to distinguish between dif-
ferent tissue regions.With this inmind, the classification accuracy achieved
at 85.7% is very good.More rigorous labelingofmargins couldbeperformed
in the future by having several pathologists from different centers label
the data.

The performance of the classifiers may also be affected by the accuracy
of the spectral unmixing, particularly themethod and the basis spectra used.
This paper used the spectra described previously with non-negative least
squares unmixing35. However, other spectra have also been proposed for
brain tumor fluorescence66. The effectiveness of both sets of spectra is
evaluated in a recent paper67, which also explores the unmixing algorithm,
including considerations of sparsity and the underlying probabilistic
models. Therefore, future work should extend the analysis presented in this
paper to see if new unmixing approaches can improve the accuracy of the
classifiers.

Finally, though PCA was used in this paper primarily for visuali-
zation, analysis of information loss, and comparison to previous work58,
it should not be used as an alternative for spectral unmixing. PCA is non-
unique, so the factors can be rotated to produce a set of axes that is
equivalently optimal from the PCA perspective but which provides an
entirely different spectral unmixing result. Instead, independent com-
ponent analysis (ICA) may be more suitable, assuming the different
fluorophores are statistically independent68. As a result, the PCA com-
ponents do not match the shape of the basis spectra, except for the first
one, which resembles PpIX634 (see Supplementary Fig. 1). Additionally,
the fact that the classification results with PCA were worse than those
with spectral unmixing could be due to several factors. The scaling of the
fluorophore abundances varied greatly, which PCA does not capture
well. Furthermore, PCA requires zero-mean data and thus subtracts the
mean from the data as one of the first processing steps. However, spectral
data is inherently non-negative, leading to unphysical and inaccurate
representations.

This paper has explored the effect of different neurosurgically relevant
categorizations of brain tumors and tissue on the five previously-
characterised35 fluorescence emission spectra. At least four of five

fluorophore abundances were found to vary statistically significantly
(p < 0.01) among tumormargins,WHOgrades, and tissue types. To test the
predictive value of the unmixing, we introduced four different ML-based
classifiers for tissue type, tumor margins, WHO grades, and IDH status.
Each classifier achieved high accuracy, thus promising practical utility for
similar systems in the future and demonstrating the differential expression
of the fluorophores in different tissue classes and tumors. Together with the
fact that the five mathematically optimal PCA-derived components mat-
ched very closely to the physically justified fluorophores, this also shows the
value and accuracy of the five fluorophores as biomarkers. Moreover, it
shows potential for automatic intraoperative classification systems in
fluorescence-guided neurosurgery in the future.

Data availability
Patient data cannot be made publicly available for privacy reasons, but
spectral data may be sharedwith individuals at reasonable request. The raw
results from the ML models from which Figs. 4–8 were generated are
included in Supplementary Data 1.

Code availability
The code is not made publicly available because it primarily handles our
specific data. The algorithms used (random forests,multi-layer perceptrons,
etc.) were implemented in SciKit-Learn and are available open source at
scikit-learn.org or any similar library. However, the code may be made
available upon reasonable request.
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