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Abstract: Through spectral unmixing, hyperspectral imaging (HSI) in fluorescence-guided
brain tumor surgery has enabled the detection and classification of tumor regions invisible
to the human eye. Prior unmixing work has focused on determining a minimal set of viable
fluorophore spectra known to be present in the brain and effectively reconstructing human data
without overfitting. With these endmembers, non-negative least squares regression (NNLS) was
commonly used to compute the abundances. However, HSI images are heterogeneous, so one
small set of endmember spectra may not fit all pixels well. Additionally, NNLS is the maximum
likelihood estimator only if the measurement is normally distributed, and it does not enforce
sparsity, which leads to overfitting and unphysical results. In this paper, we analyzed 555666 HSI
fluorescence spectra from 891 ex vivo measurements of patients with various brain tumors to
show that a Poisson distribution indeed models the measured data 82% better than a Gaussian
in terms of the Kullback-Leibler divergence, and that the endmember abundance vectors are
sparse. With this knowledge, we introduce (1) a library of 9 endmember spectra, including
PpIX (620 nm and 634 nm photostates), NADH, FAD, flavins, lipofuscin, melanin, elastin, and
collagen, (2) a sparse, non-negative Poisson regression algorithm to perform physics-informed
unmixing with this library without overfitting, and (3) a highly realistic spectral measurement
simulation with known endmember abundances. The new unmixing method was then tested on
the human and simulated data and compared to four other candidate methods. It outperforms
previous methods with 25% lower error in the computed abundances on the simulated data than
NNLS, lower reconstruction error on human data, better sparsity, and 31 times faster runtime
than state-of-the-art Poisson regression. This method and library of endmember spectra can
enable more accurate spectral unmixing to aid the surgeon better during brain tumor resection.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Delineating glioma margins during brain surgery is very difficult since the tumor is infiltrative
and hard to distinguish from healthy tissue. However, fluorescence guidance can improve patient
outcomes by increasing resection rates [1,2]. In fluorescence-guided resection (FGR) of brain
tumors, the patient is given 20 mg/kg b.w. of 5-aminolevulinic acid (5-ALA) preoperatively.
This gathers preferentially in tumor cells where it is metabolized to protoporphyrin IX (PpIX), a

#528535 https://doi.org/10.1364/BOE.528535
Journal © 2024 Received 25 Apr 2024; revised 6 Jun 2024; accepted 6 Jun 2024; published 2 Jul 2024

https://orcid.org/0000-0001-6907-9851
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.528535&amp;domain=pdf&amp;date_stamp=2024-07-02


Research Article Vol. 15, No. 8 / 1 Aug 2024 / Biomedical Optics Express 4407

precursor on the heme synthesis pathway [3]. When excited with violet light at 405 nm, PpIX
fluoresces red, with a double peak at 634 and 700 nm. The difference in wavelength between the
excitation and emission is called the Stokes shift and allows the fluorescence to be isolated from
the bright excitation light using optical filters [1,4]. Thus, tumors that are otherwise difficult
to distinguish from healthy tissue can often be identified by their red glow. This leads to more
complete resection and consequently better progression and overall survival [2,5]. However, in
lower-grade glioma or infiltrating tumor margins, fluorescence is often not visible to humans.
Using sensitive cameras does not improve the problem because the PpIX fluorescence is masked
by other endogenous fluorophores known collectively as autofluorescence, which emit at similar
wavelengths and intensities.

Hyperspectral imaging (HSI) allows the PpIX content to be isolated from autofluorescence by
examining the emission spectrum. HSI devices capture three-dimensional data cubes containing
all the scene’s spectral and spatial information. Like an RGB image, which has three channels,
data cubes can have hundreds of channels, each at a different wavelength. Each pixel, therefore,
contains the full emission and reflectance spectrum of that point. Thus, the fluorescence spectra
of every visible point in the image can be captured [4].

An alternative method for measuring the emission spectrum is using a standard spectrometer
with a fiber optic probe that measures one point at a time. This approach is used frequently in
fluorescence-guided neurosurgery research [6,7]. While this has better spectral resolution than
HSI, it captures one point of around 1 mm diameter at a time. The optical fiber must therefore be
scanned across the whole biopsy surface with its position tracked to reconstruct an image of the
surface with spectral information. In contrast, HSI captures the entire scene with much better
spatial resolution and must scan in the spectral dimension. Given the relatively low frequency
content of the spectra compared to the spatial variation, we opted for spatial resolution and used
HSI. This also has the potential for future improvements in acquisition speed through snapshot
HSI cameras [8–11].

Each measured spectrum contains a combination of fluorescing molecules, or fluorophores,
including PpIX and the autofluorescence. A linear model is commonly assumed, in which the
measured fluorescence spectrum (s) is a linear combination of the emission spectra of the present
fluorophores (bi), also called endmember spectra [12]:

s =
k∑︂

i=1
cibi = Bc (1)

where B =
[︂

b1 · · · bk

]︂
is the endmember matrix. With prior knowledge of the endmember

spectra, the relative abundances (ci) of the endmembers can be estimated using linear regression
techniques [13]. During 5-ALA-mediated fluorescence-guided surgery for malignant gliomas,
the endmembers likely include the two photostates of PpIX [3,6], called PpIX620 and PpIX634, as
well as autofluorescence from flavins, lipofuscin, NADH, FAD, melanin, collagen, and elastin
[13,14]. However, only 3 or 4 endmembers are usually present in any given spectrum. This latter
fact is called sparsity – the abundance vectors are sparsely populated with non-zero values.

The linear model neglects multiple scattering [15] and other nonlinear effects but gives a
convenient, dimensionally-reduced representation of the spectra. It has been shown that almost all
the information of a given spectrum is contained in up to five endmember abundances [13,16]. As
a result, recent work in HSI for fluorescence-guided surgery has shown great promise for detecting
tumor regions [4,17] and classifying tissue types using the endmember abundances [16,18]. The
abundances have also been used to study 5-ALA administration timing [19] and dosage [20] and
to improve the image acquisition process itself [21–23]. However, these computations are very
sensitive to the chosen endmember spectra and the unmixing method.
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Many spectral unmixing methods have been proposed based on various regression [12,24–26],
geometric [24], and deep learning [27–32] algorithms [33]. Nonlinear methods have also been
explored [34–36]. Previous work in neurosurgery, however, has typically used non-negative
least squares (NNLS) regression [3,13,16,17,37,38]. This is simple, fast, and enforces the
physical constraint of abundance non-negativity. However, least squares is only the maximum
likelihood estimate if the data is normally distributed. In fact, photon emission is theoretically
Poisson-distributed [39]. Thus, others have proposed Poisson regression [40] methods. Without
sparsity constraints, however, both these methods overfit and thus improve in accuracy with the
number of endmember spectra used; in reality, few fluorophores are present in a given pixel
[12]. In this case, the output may fit the measurement extremely well, but it does not accurately
describe the system’s physical state. Not only is this undesirable, but it may also affect the
accuracy of subsequent classification tasks performed with the abundances. Furthermore, it
may attribute non-zero abundances to key fluorophores such as PpIX, potentially leading to
false-positive tumor identification. Thus, various sparse methods have also been explored [12,24]
through different norm regularizations, low-rank non-negative matrix factorization [41], and
partial least squares [25,36,37]. Interesting recent work has also explored the potential to excite
the fluorescence at several different wavelengths, which may enable unmixing without prior
knowledge of the endmembers [42].

To circumvent unmixing by obtaining semantic segmentations of tissue type directly from the
raw data cube, various deep learning methods have been proposed [43–45]. For brain tumor
resection, in particular, the technique is promising [46]. Studies have used random forests,
support vector machines (SVMs), and convolutional neural networks (CNNs), or voting-based
combinations of k-nearest neighbors (KNN), hierarchical k-means clustering, and data-driven
dimensionality reduction techniques to perform segmentation of tissues in vivo [47–51]. Though
promising and exciting, these papers obtained accuracies of around 70-80% [52], which is
currently too low for clinical application, and were trained on relatively small datasets [53,54].
With commercial development [46] and further research, these values may increase, but the
generalizability of such methods is questionable, especially across different devices or centers.
Furthermore, they are fixed to performing a specific task, and their outputs are neither explainable
nor guaranteed to fulfill any criteria of accuracy or robustness.

Therefore, a modular implementation of spectral correction followed by unmixing and further
processing of the abundance vectors remains a flexible, generalizable, and robust methodology.
For example, by adopting a modular approach, the output endmember abundances may be used to
distinguish tumor from healthy tissue, classify the type of tumor, or analyze biomarkers such as
isocitrate dehydrogenase (IDH) mutation, which is clinically highly relevant. Initial exploration
of such processing has had promising results [16,18]. This classification module can be used on
any device in any hospital, as long as the relevant endmember abundances are first computed.
Similarly, since most patients should have predominantly the same fluorophores present, the
unmixing can be completely general for any device. Only the preprocessing step is necessarily at
least partly device-specific.

This paper, therefore, describes a practical, general, high-performance unmixing method
and an associated library of endmember spectra for HSI in fluorescence-guided brain tumor
resection. The method is fast, accurate, physics-informed, applicable to any device with requisite
pre-processing, and is the maximum likelihood estimator for the unmixing. We first show that
human brain HSI data is indeed Poisson distributed and sparse using a large and broadly diverse
dataset including 184 patients and 891 fluorescence HSI data cubes. A method is then presented
using this fact to produce highly realistic simulated data with known fluorophore abundances.
Finally, the new unmixing method and four other candidate methods are applied to the real and
simulated data in multiple experiments to compare their effectiveness. This paper thus elucidates
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the statistical nature of brain tumor HSI data and how to take advantage of its inherent structure
through a complete unmixing method and library.

2. Methods

2.1. Imaging device

The HSI device used in this paper has previously been described [4,13,16], [17,19,20] and is
shown in Fig. 1. Ex vivo tissue samples were illuminated in turn with blue light from a 405 nm
LED, white light from an LED, and no light to capture fluorescence, white, and dark spectra
respectively. During each illumination phase, the reflected light and emitted fluorescence were
captured in a ZEISS Opmi Pico microscope (Carl Zeiss Meditec AG, Oberkochen, Germany)
and passed through a liquid crystal tunable filter (Meadowlark Optics, Longmont, CO, USA) to
a scientific metal oxide semiconductor (sCMOS) camera (PCO.Edge, Excelitas Technologies,
Waltham, MA, USA). Hyperspectral data cubes were captured by sweeping the filter from 420 to
730 nm and capturing a 2048× 2048 pixel grayscale image at every sampling wavelength. Each
image had a 100 or 500 ms exposure time to ensure a good signal-to-noise ratio. Regions of
10× 10 pixels were averaged to further increase the signal-to-noise ratio, and non-overlapping
regions were extracted from each biopsy to ensure independent samples. Though the biopsies
were not perfectly flat, the average spatial resolution was 21 µm× 21 µm per pixel. The dark
images were used to subtract the dark noise of the camera sensor. Next, the white reflectance
spectra were used to correct the fluorescence spectra for geometric effects and inhomogeneous
scattering and absorption across the surface using dual-band normalization [7,55]. Finally, the
spectra were corrected for the filter transmission curves and wavelength-dependent sensitivity of
the camera.

Fig. 1. Hyperspectral imaging device, with output data cube illustration.

2.2. Brain tumor data

This HSI device has been used at the University Hospital of Münster, Münster, Germany, to
examine ex vivo brain tumor samples removed during surgery and, as a result, obtain hyperspectral
data cubes. A standard dose of 20 mg/kg of 5-ALA was administered orally to patients undergoing
surgery for various brain tumors four hours before induction of anesthesia. Tissue resected by the
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surgeons was taken to the HSI system and imaged ex vivo before being passed on to pathology.
Informed consent was obtained from each individual in this patient collective. All procedures
performed in studies were in accordance with the ethical standards of the institutional and/or
national research committee and with the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. Data collection and scientific use of biopsies had previously been
approved by the ethics committee of the University of Münster.

In total, data cubes of 891 biopsies from 184 patients were measured, resulting in 555666
human brain tumor spectra, described in Table 1. This large and diverse dataset was previously
analyzed with reference to known fluorophores to determine the endmember spectra present in
the data [13]. These included PpIX634 and PpIX620, the two fluorescing photostates of PpIX, as
well as lipofuscin, flavins, and NADH. Fürtjes et al. similarly characterized five fluorophores,
arriving at similar PpIX and lipofuscin spectra in addition to collagen, elastin, melanin, and FAD
[14]. We combine these spectra into a single library of 9 endmembers, shown in Fig. 2. These
are also available to download (see Supplement 1).

Fig. 2. Library of nine endmember spectra to represent any brain tumor fluorescence HSI
measurement. These include two PpIX and seven autofluorescence spectra.

While the measured spectra are assumed to be linear combinations of these endmembers, they
additionally contain noise. Several measured spectra are shown in later figures. Assuming the
measurements are normally distributed, the maximum likelihood estimate for the unmixing is the
least squares solution [56]. However, in theory, the photon emission governing the measured
spectra is Poisson distributed [39]. While normal distributions are described by their mean, µ,
and variance, σ2, Poisson distributions have a single parameter, λ, which equals both the mean
and variance. Thus, regions of spectra with larger magnitude should also have more variance in
the noise. If this is true, the maximum likelihood estimate for the unmixing would no longer be
linear least squares. Therefore, we analyzed the data to determine its distribution.

To isolate the noise, it was not possible to unmix the spectra and then subtract the fitted
spectrum from the measured one since the unmixing is imperfect. This leads to bias and strong
artifacts and fails to isolate the noise. Instead, a high pass filter with relative frequency cut-off of

https://doi.org/10.6084/m9.figshare.26002267
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Table 1. Overview of the evaluated dataset. In total, 891 hyperspectral data
cubes were measured of ex vivo tissue from FGR of 184 patients

Class # Samples Class # Samples

Tissue Type 632 Margin Type (Gliomas) 288

Pilocytic Astrocytoma 5 Reactive brain tissue 100

Diffuse Astrocytoma 57 Infiltrating zone 57

Anaplastic Astrocytoma 51 Solid tumor 131

Glioblastoma 410

Grade II Oligodendroglioma 24 WHO Grade (Gliomas) 571

Ganglioglioma 4 I 9

Medulloblastoma 6 II 84

Anaplastic Ependymoma 8 III 57

Anaplastic Oligodendroglioma 4 IV 421

Meningioma 37

Metastasis 6 IDH Classification 411

Radiation Necrosis 20 Mutant 126

Wildtype 285

0.1 was used to remove the relatively low-frequency signal and keep only the noise. The cut-off
frequency was chosen experimentally, as shown in Fig. 3.

Fig. 3. Typical measured spectrum with high pass filters of various cut-off frequencies
applied. A cut-off, ω = 0.1 effectively isolates the noise by removing the main signal.

This produces a distribution of 555666 noise magnitude values at each of the 310 sampling
wavelengths. The mean and variance of these distributions were analyzed and correlated with the
average magnitudes of the measured spectra at the corresponding wavelengths. Additionally,
the parameter of a Poisson distribution describes the frequency of an event occurring. In this
case, the event is the emission of photons, which occurs with an extremely high frequency even
at relatively low light intensity, because each photon delivers such a small quantum of energy.
Hence, λ is very large, so the Poisson distribution is very closely approximated by a Gaussian with
µ = σ2 = λ, where µ is the average magnitude of the measured spectra at the given wavelength.

On the other hand, if the data is normally distributed, the variance should be independent of µ.
Hence, two Gaussian probability density functions (PDFs) were generated at each wavelength,
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both with mean µ: one with variance σ2 = µ, and one with constant variance σ2 = v. The
constant v was chosen as the average variance of all the measurement distributions. Each
generated distribution was compared to the empirical distribution using the Kullback-Leibler (KL)
divergence [57], which gives the level of difference between two distributions. The empirical
distribution is not continuous, so the generated distribution was binned accordingly, and the
discrete KL Divergence was used:

DKL(p(x)||q(x)) =
∑︂
x∈X

p(x) ln
p(x)
q(x)

2.3. Simulation

When evaluating an unmixing algorithm, simply comparing reconstruction error does not
guarantee the underlying abundances are correct due to noise and overfitting. Therefore, to assess
the unmixing fully, it is necessary to have realistic data with known endmember abundances.
With access to the noise model determined above, as well as the endmember spectra and statistics
on their abundance distributions across 555666 human spectra, we can generate simulated spectra
for this purpose that closely match real human data.

Assume the spectra are represented as m × 1 vectors, I.E. they are sampled at m wavelengths.
Also, let B ∈ Rm×k be the endmember matrix whose columns are the k individual endmember
spectra, bi ∈ R

m. The simulated spectra were created as follows (the code is available in the
Supplement 1):

1. The mean and variance of the distributions of the k endmember abundances were extracted
from the human data.

2. A set of n artificial abundance vectors were sampled independently from normal dis-
tributions with these means and variances. The abundances form an abundance matrix
C0 ∈ Rk×n.

3. All abundances less than a threshold, t, were set to 0. In our arbitrary units, t = 0.15. This
enforces the sparsity that is observed in human data.

4. The endmember matrix was multiplied by the abundance matrix to create a matrix of
simulated spectra, S ∈ Rm×n : S = BC0.

5. For each m × 1 simulated spectrum, s, a corresponding noise vector, z, was generated such
that each element zi was independently sampled randomly from a normal distribution with
mean and variance si.

6. The noise was added to the simulated spectrum, and the result was slightly smoothed
using a Savitsky-Golay filter to simulate the smoothing from the image acquisition and
interpolation process.

A set of n= 1000 resulting spectra is shown in Fig. 4 in comparison to a set of 1000 human
measurement spectra. The two are virtually indistinguishable.

2.4. Unmixing methods

For this paper, one new unmixing algorithm was developed, and several others were implemented
for comparison. All implementations are found in the Supplement 1, as are rigorous derivations
of the algorithms. In this section, only the algorithms are outlined.

Two families of unmixing algorithms were tested, one using a least squares approach, in
which the magnitude of the reconstruction error between the unmixing and the measured signal
is minimized, and one using Poisson regression, in which the likelihood of the measurement

https://doi.org/10.6084/m9.figshare.26002267
https://doi.org/10.6084/m9.figshare.26002267
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Fig. 4. 1000 real (left) and simulated (right) spectra, showing strong PpIX spectra (top),
and zoomed-in weaker spectra containing predominantly autofluorescence (bottom). The
real and simulated spectra of both sets are effectively indistinguishable.

given the abundance vector is maximized. The latter is maximum likelihood estimation (MLE),
assuming Poisson-distributed measurements. Furthermore, in each algorithm except nonnegative
least squares (NNLS, the baseline legacy method), the sparsity of the endmember abundances is
enforced. The sparsity of a vector is given by its L0 norm, the number of non-zero elements
in the vector. However, this is non-convex, so we use a relaxation in the form of the L1 norm:
| |x| |1 =

∑︁
|xi |, which is known as a Lasso model. In each case, we define a loss function

L(c) : Rk
+ → R and solve the following general optimization problem to obtain the estimate, ĉ.

ĉ = argmin
c≥0

L(c) (2)

2.5. Nonnegative least squares (NNLS)

This is the method that has been previously used in brain tumor measurements. The objective
is to minimize the L2 reconstruction error, and no regularization is used. The loss function is
shown in Eq. (3).

L(c) = 1
2
| |s − Bc| |2 (3)

The analytical solution to the unconstrained problem is the well-known least squares solution,
ĉ = (B⊤B)−1B⊤s. However, this does not account for the nonnegativity constraint. The constrained
problem, however, is also solved very efficiently and exists as a built-in function in MATLAB
(lsqnonneg.m), based on the algorithm by Lawson and Hanson [58].
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2.6. Sparse nonnegative least squares (SNNLS)

This extends NNLS with a sparsity constraint using L1 regularization, shown in Eq. (4).

L(c) = 1
2
| |s − Bc| |2 + λ | |c| |1 (4)

As the L1 norm is non-differentiable at 0 and the problem is constrained, an analytical solution
does not exist. However, due to the nonnegativity of c, the L1 norm becomes 1⊤c, so we can use
projected gradient descent. The projection onto the feasible set is trivial: replace all negative
elements with 0. We additionally use heavy-ball momentum [59], and an adaptive step size to
improve the convergence. Hence, the problem is simply and efficiently solved using Algorithm 1.

Algorithm 1. Heavyball Projected Gradient Descent for SNNLS

2.7. Iterative soft thresholding algorithm (ISTA)

ISTA is a proximal gradient descent method to account for the non-smoothness of part of the
objective function, as described by Beck and Teboulle [60] and shown in Algorithm 2. We use
the same objective shown in Eq. (4), which has a smooth and a non-smooth term. Due to this
structure, the algorithm is much faster than subgradient methods. Accelerated versions of this,
called fast ISTA (FISTA) exist [60], and were tested cursorily, but were excluded due to poor
performance (see Discussion section).

Algorithm 2. Iterative Soft Thresholding Algorithm (ISTA)

2.8. Sparse low-rank Poisson regression (SLPR)

This method and the next follow a completely different approach to the previous two methods,
using Poisson regression through MLE, as described above. SLPRU was described by Wang
et al [40], and we used their MATLAB code. This method enforces not only sparsity in the
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abundance vector, but also low-rankness in the spatial distribution of the abundances. The latter
decreases noise and creates a smoother overlay map of abundances. However, our preprocessing
involves pixel averaging across a region of interest, so this is potentially redundant. Analysis of
the necessity and comparison of the different methods for achieving spatial smoothness is left for
future work.

2.9. Sparse non-negative Poisson regression (SNPR)

This method is developed here as a much-simplified version of SLPR, which is more efficient
and does not make the low-rank assumption. The objective function is shown in Eq. (5), but the
algorithm is derived in detail in the Supplement 1.

L(c) = 1⊤mBc − s⊤ log Bc + λ1⊤k c (5)

To solve this, we adopt a similar approach to the Algorithm 1, using projected gradient descent
with heavy-ball momentum and adaptive step size (Algorithm 3). The projection operator is,
again, trivial.

Algorithm 3. Sparse Nonnegative Poisson Regression (SNPR)

2.10. Tests

Several tests were performed to evaluate the unmixing methods. First, all the human data was
unmixed using NNLS with different numbers of endmembers to examine how it overfits. Next,
1000 simulated spectra were unmixed using the different methods, and the reconstruction error,
endmember abundance error, spectral angle error, runtime, and false positive rate were analyzed.
The false positive rate is the number of individual endmember abundances that were assigned
non-zero values when they were known to be zero. This is clinically relevant since, for example,
PpIX abundance is used as a marker for malignancy. Having a false positive value could lead to
unnecessary and harmful resection.

The same was repeated with all the human data, but the sparsity was evaluated instead of
abundance error and false positive rate, which require ground truth values. For this, the sparsity of
a vector was defined as the L0 norm, the number of non-zero elements in the vector. The sparsity
of an unmixing was thus taken to be the mean L0 norm of all the computed abundance vectors.
The unmixing runtime per spectrum was measured as the total runtime for all 555666 spectra,
divided by 555666. The runtime is very relevant for unmixing high-resolution data cubes in real
time. The spectral angle error (SAM) measures the similarity of two spectra, akin to the cosine
similarity [61]. The measured and reconstructed spectra are treated as high-dimensional vectors,
and the cosine of the angle between them is computed using cos θ = si · (Bĉi)

| |si | | | |Bĉi | |
where si is the

https://doi.org/10.6084/m9.figshare.26002267
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measured spectrum, and Bĉi the fitted one. Since this compares the cosine of the angle, values
close to 1 mean the spectra are similar. The abundance error is the mean square error (MSE)
between the computed and expected abundance vectors: eab =

1
n

n∑︁
i=1

| |ĉi − c0,i | |
2. Similarly, the

reconstruction error is the MSE of the measured and fitted spectra: erc =
1
n

n∑︁
i=1

| |Bĉi − si | |
2.

Finally, to assess the value of the 9 chosen endmember spectra in the spectral library, the best
unmixing technique was chosen, which gave accurate and sparse results, and the distribution of
each endmember abundance across all the human data was determined. The code and spectral
library are available in the Supplement 1.

3. Results

3.1. Overfitting

First, the human data was unmixed with the five endmember spectra from [13] and with all 9
endmember spectra using NNLS. Two examples with varying PpIX content are shown in Fig. 5.
It is qualitatively apparent that the unmixing with 9 basis spectra assigns non-zero abundances to
many endmembers without truly improving the fit quality.

The same result is shown looking at the reconstruction error in Fig. 5, where adding more
spectra beyond 4 does not significantly improve performance despite the complexity of the
reconstructions increasing. This suggests that it should be possible to simultaneously represent
the human spectra with only 4 endmembers, using a sparse reconstruction algorithm.

3.2. Data distribution

From the noise distributions of the measured data, the variance was obtained at every wavelength
and plotted versus the average magnitude of the spectra at each wavelength. The result is shown
in Fig. 6. The variance is linearly related to the mean, with a coefficient of determination of
R2 = 0.81 and a correlation coefficient of 0.90. The slope is 1.37, showing that the mean is
very close to the variance. The reason why most of the points are near zero mean is that the
PpIX spectrum is near zero for most wavelengths. This relation between the mean and variance
suggests a Poisson distribution.

Next, the Kullback-Leibler divergence of the data distributions was analyzed at each wavelength
with the two model distributions, Gaussian and Poisson, as described in the Methods section.
The data distribution is far more nearly Poisson distributed than Gaussian, as shown in Fig. 6.
The mean KL divergence for the Poisson distributions is 2120, while for the Gaussians, it is 3850,
an increase of 82%. This is the rationale for pursuing a Poisson regression-based unmixing.

3.3. Unmixing tests

As described in the Methods section, tests were performed on the six different unmixing
algorithms, once with human data and once with simulated data. The runtimes of the methods
are shown in Table 2. These depended on the regularization parameter, λ. After NNLS, which
is a highly optimized MATLAB built-in function, SNPR is the fastest. The rate of ISTA and
SNNLS are similar, while SLPR is an order of magnitude slower.

The results on the simulated data (1000 spectra) are shown in Table 3. SNPR equals the
reconstruction error of NNLS, which is optimal in terms of MSE. Furthermore, SNPR with
λ = 0.35 is second-best regarding false positives and abundance error. However, ISTA far
outperforms all other methods in terms of false positives and clearly computes the most accurate
abundance vectors. We see that despite its abundances matching the ground truth much better
than any other algorithm, which is ultimately all that matters, the reconstruction error of ISTA

https://doi.org/10.6084/m9.figshare.26002267
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Fig. 5. Two typical unmixings using NNLS with 9 spectra (left) and 5 spectra (right). We see
that with 9 spectra, many of the endmembers are given non-zero abundances without visibly
improving the quality of the fit, though the MSE does decrease. Below is the reconstruction
error with increasing number of endmembers. PpIX634, PpIX620, lipofuscin, collagen,
NADH, melanin, elastin, flavin, and FAD were added in that order. After 4 basis spectra, the
error no longer improves significantly, but the additional spectra are often assigned non-zero
abundance nonetheless.

is relatively large. This shows that reconstruction error is a flawed metric for the unmixing
performance.

The number of false positives appears relatively large for all the algorithms except ISTA, but
many false positive abundance values are very small. Furthermore, there were far fewer false
positive PpIX634 values in SNPR and ISTA. For example, using ISTA with λ = 1.4, there are
only 27 false positive PpIX634 values or 0.27%. This is relevant because PpIX is often used as a
malignant tissue marker.

The results on human data are also shown in Table 3. It is not possible to evaluate abundance
accuracy or false positive rate as there is no ground truth data. Instead, SAM and L0 norm
are used. NNLS achieves the best reconstruction error, but again, SNPR is extremely close to
optimal. Furthermore, SNPR gives the best SAM and second-highest sparsity. Again, ISTA
achieves the best sparsity, at approximately 4 endmembers per measured spectrum, without
greatly sacrificing the reconstruction error. The results from ISTA are, in fact, sparser than
when only the 5 endmembers from Black et al [13]. are used, despite the reconstruction error
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Fig. 6. (Left) Signal mean versus noise variance of measured hyperspectral human data.
The two are approximately linearly related with a slope of 1.37. (Right) Kullback-Leibler
divergence of the measured data with modeled normal and Poisson distributions. The data is
much closer to the Poisson model.

Table 2. Runtimes of unmixing algorithms at relevant
values of λ. The fastest is bolded, and the second best is

underlined

Algorithm Regularization (λ) Runtime per spectrum (ms)

ISTA
1.2 0.3828

1.4 0.179

1.6 0.196

SNNLS
0.3 0.2347

0.4 0.173

SNPR
0.25 0.162

0.35 0.2311

0.45 0.269

NNLS - 0.143

SLPR
1 4.8

0.1 4.3

0.01 4.4

also being half. The reconstruction error and SAM of SLPR are low, but this is likely due to
substantial overfitting, with, on average, 7.6 of the 9 endmembers used in every unmixing.

It should be noted that a difference of 0.28 in the average L0 norm (Between SNPR and NNLS)
equates to 155,586 fewer endmembers assigned non-zero values, or more than 1 in 4 spectra
having one fewer endmember assigned. Thus, it is a substantial difference.

3.4. Endmember library

Using ISTA with λ = 1.4, which gave the best results on the simulated spectra and the sparsest
human data unmixing, the human data was again unmixed, and the distributions of the endmembers
were analyzed, as shown in Table 4. PpIX634, PpIX620, lipofuscin, and collagen are by far the
most common, followed by NADH and melanin. Elastin and flavins are sometimes needed, and
FAD rarely. Overall, however, all spectra are used relatively frequently. In particular, the mean,
median, and standard deviation values are shown in Table 4. Clearly, all spectra are important.
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Table 3. Unmixing performance on 1000 simulated spectra with ground truth
abundance values and on human data. The false positive column is the total
number of abundances (out of 9000) that were incorrectly assigned nonzero

values. Values are mean ± standard deviation when appropriate. The best values
are bolded, and the second best are underlined. NNLS is the baseline and

MSE-optimal, so it is not considered

Simulated Data

Algorithm Regularization
(λ)

Reconstruction
MSE ×10−4

False
Positives

Abundance
MSE ×10−2

ISTA
1.2 6.34 ± 5.17 767 6.17 ± 9.07

1.4 8.09 ± 6.00 697 6.01 ± 0.86
1.6 11.0 ± 7.55 687 6.07 ± 8.12

SNNLS
0.3 3.54 ± 4.66 2081 7.87 ± 10.78

0.4 30.0 ± 51.0 1790 14.17 ± 16.09

SNPR
0.25 3.52 ± 4.66 2143 7.90 ± 10.81

0.35 3.79 ± 5.25 1621 7.81 ± 10.76

0.45 25.0 ± 29.0 2064 8.44 ± 16.51

NNLSQ - 3.52 ±4.64 2222 8.05 ±10.89

SLPR
1 4.16 ±5.12 2664 8.42 ±10.14

0.1 4.23 ±5.14 2574 8.64 ±10.32

0.01 4.24 ±5.14 2568 8.67 ±10.35

Human Data
Algorithm Regularization

(λ)
Reconstruction
MSE ×10−2

Abundance
L0 Norm

Reconstruction
SAM

NNLS (5 Spectra) 12.7 ± 5.60 4.50 0.216 ± 0.105

(9 Spectra) 5.54 ± 9.60 5.53 0.120 ± 0.044

SLPR 1.5 5.94 ± 10.2 7.61 0.128 ± 0.053

SNPR 0.35 5.55 ± 9.60 5.25 0.120 ± 0.044
ISTA 1.4 6.60 ± 9.19 3.89 0.175 ± 0.089

Table 4. Statistics of fractional endmember abundances in human data using ISTA unmixing
with regularization λ = 1.4. The last row indicates the percentage of the measurements that

contain non-zero amounts of that endmember

PpIX634 PpIX620 Lipof Flavin NADH FAD Collagen Elastin Melanin

Mean 0.422 0.099 0.234 0.011 0.010 0.001 0.186 0.018 0.019

Medi-an 0.477 0.063 0.122 0 0 0 0.128 0 0

Std Dev 0.328 0.105 0.251 0.027 0.055 0.008 0.143 0.062 0.050

% 84.1 66.3 70.1 21.9 7.3 16.5 96.4 14.0 29.0

Some are frequently present and in high abundance; others, like NADH, are less frequently
present but important when they are, and still, others are often there but only in small quantities.
However, all are essential for a complete and accurate dataset description.

4. Discussion

This paper has shown, using a large and diverse dataset of human brain tumor HSI images,
that the measurements in HSI for fluorescence-guided resection of brain tumors are (1) Poisson
distributed, (2) sparse in terms of endmember abundances, and (3) diverse in their fluorophore
content. The consequence of the third point is that while each individual spectrum contains, on
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average, around 4 fluorophores, a broader library of endmembers is needed to describe a whole
dataset. Therefore, this article has, for the first time in neurosurgery, compiled a library of 9
endmember spectra and paired them with sparse unmixing algorithms to represent the diversity of
brain tumors without overfitting individual spectra. To do so, a simulation algorithm for human
brain tumor HSI measurements was developed. A novel, simplified sparse Poisson regression
method was also implemented, and five algorithms were tested, both on human and simulated
data.

Overall, the SNPR and ISTA algorithms substantially outperformed all others. The outstanding
performance of ISTA was a surprise as it ultimately solved the same optimization as SNNLS.
However, it produced by far the most accurate endmember abundance vectors, while all other
methods overfit to varying degrees. The second-best method in this respect was SNPR, which
was slightly faster and produced better reconstructions, both in terms of SAM and L2 norm. Both
results applied equally to simulated and human data. Therefore, depending on the application,
SNPR (λ = 0.35) or ISTA (λ = 1.4) should be used: the former if reconstruction and/or speed
are paramount, and the latter if endmember abundances and sparsity are more important.

This is not a detailed mathematical exploration of the unmixing problem in the context of
neurosurgery, and various aspects, such as convergence rates or theoretical accuracy limits given
by the Cramér-Rao lower bound of the estimator [62], are yet to be determined. In addition,
further algorithms could be tested, for example ones making use of the Hessian, which is known,
or using alternating direction method of multipliers (ADMM) [63]. Alternatively, FISTA is an
improved version of ISTA, also from Beck and Teboulle [60]. There are many other adaptations
of this algorithm, for example by Wei et al. and those reviewed in their introduction [64]. FISTA
is shown in the Supplement 1 and was tested but performed much worse than all other methods
and was thus excluded. This family of algorithms, as well as others, deserve a closer look.

Future work should also explore deep learning for spectral unmixing in brain tumor surgery.
Much research in deep learning for general HSI unmixing exists and was reviewed briefly in the
Introduction section. However, neurosurgery has its own particular challenges. Additionally,
it is crucial for this application and others that the unmixing results are explainable. Deep
learning provides no guarantees for the output endmember abundances, which makes it difficult
to trust them to guide the resection of brain tumors. Hence, classical methods with mathematical
guarantees of optimality under closely studied conditions, as described in this paper, are valuable.
Future work in explainable AI for HSI unmixing in neurosurgery may, however, improve
performance.

With the spectral library and better unmixing method, it will also be interesting to see if the
performance of machine learning classifiers that use the abundances improves. Previous work
used 5 endmember abundances to classify tumor type, tumor margins, IDH mutation, and WHO
grade with a relatively high degree of accuracy [16]. With 9 endmembers and more accurate
values, these results will likely improve. Similarly, future work should revisit analyses of what
endmembers are present in higher quantities or in different ratios in what types of tissues [3,6],
to see if more concrete results can be discovered. A lower limit of fluorophore detectability
should also be established through experiments with known abundances to better understand
the limitations of the device and methods. The method and library presented in this paper
may improve classification performance by lowering these limits and providing more accurate
endmember abundances.

Further future work should include exploring the 2D spatial distribution of fluorophores and
the typical endmember abundances in healthy tissue. With this knowledge, the simulated spectra
described in this paper could be used to create simulated data cubes on which to train deep
learning models. An example of this is shown in Fig. 7, where a circular area was demarcated
as tumor and simulated spectra were generated accordingly, with some spatial smoothing. The
resulting data cube was unmixed using ISTA, giving qualitatively accurate results. In future,

https://doi.org/10.6084/m9.figshare.26002267


Research Article Vol. 15, No. 8 / 1 Aug 2024 / Biomedical Optics Express 4421

similar approaches could be used to produce large amounts of data for model training and
methodological evaluation.

Fig. 7. Simulated hyperspectral image of circular brain tumor surrounded by healthy tissue.
Simulated spectra were generated separately in each region. First one spectrum was generated
by the method discussed in the paper, with abundances distributed as they are in human
brain tissue. Next, its neighbors were generated, followed by their neighbors, and so on
until the image was filled. Each new pixel was generated with abundances distributed about
the means of its existing neighbors. Thus, the spatial correlation effects were achieved to
approximate human tissue. After creating the simulated image, the data cube was unmixed to
find the estimated abundances. Qualitatively, the two match very well. Note, the color map is
made separately for each subplot, so the yellow areas in the less important autofluorescences
(eg. flavin, melanin, FAD) are much lower in value than yellow areas in PpIX. This better
displays the differences between the images. The code to generate these images is included
in the Supplement 1. Further research on spatial abundance distribution in the human brain
is required to produce accurate simulated hyperspectral images.

Through the various possible future work, this paper can gain direct clinical relevance. The
improved accuracy and decreased false-positive PpIX abundances are very useful for intraoperative
guidance since it is critical in neurosurgery not to remove excess brain tissue. The accurate
abundance vectors can be used for classification and grading of tumor tissue [16,18], to provide the
surgeon with more information. Indeed, the goal is not simply to provide a binary classification
of tumor versus non-tumor since glioma are infiltrative and often there is no such clear distinction.
Instead, this method can give the surgeon continuous quantitative data to aid in their decision
process. Additionally, the increased computational efficiency of the unmixing is important for
intraoperative scenarios in which the unmixing must run in real time on high-resolution images.

https://doi.org/10.6084/m9.figshare.26002267
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5. Conclusion

This paper has shown that HSI fluorescence measurements of human brain data are Poisson
distributed and have sparse abundance vectors, and are thus partial to sparse Poisson regression
techniques for unmixing. In particular, a maximum likelihood algorithm was derived based on
projected gradient descent with heavy-ball momentum and was shown to be both faster and
more accurate for spectral unmixing than previous methods. Furthermore, an ISTA-based least
squares algorithm outperformed all others in enforcing sparsity and accurately determining the
fluorophore abundances underlying the noisy signal. It was also shown that, while sparse, the
fluorophore content is diverse, so the presented spectral library of 9 fluorophores is essential.
Together, the unmixing algorithms and spectral library compiled in this article will hopefully
enable more accurate analysis of hyperspectral brain tumor data for intraoperative fluorescence
guidance.
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